论有自由边的非浅 Timoshenko 型壳的非线性边界问题解的存在性

IF 0.58 Q3 Engineering
S. N. Timergaliev
{"title":"论有自由边的非浅 Timoshenko 型壳的非线性边界问题解的存在性","authors":"S. N. Timergaliev","doi":"10.1134/S1990478923040154","DOIUrl":null,"url":null,"abstract":"<p> We study the existence of solutions of a boundary value problem for a system of nonlinear\nsecond-order partial differential equations for the generalized displacements under given nonlinear\nboundary conditions that describes the equilibrium state of elastic nonshallow isotropic\ninhomogeneous shells of zero Gaussian curvature with free edges in the framework of the\nTimoshenko shear model. The research method is based on integral representations for generalized\ndisplacements containing arbitrary functions that allow the original boundary value problem to be\nreduced to a nonlinear operator equation for generalized displacements in the Sobolev space. The\nsolvability of the operator equation is established using the contraction mapping principle.\n</p>","PeriodicalId":607,"journal":{"name":"Journal of Applied and Industrial Mathematics","volume":"17 4","pages":"874 - 891"},"PeriodicalIF":0.5800,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Existence of Solutions of Nonlinear Boundary Value Problems for Nonshallow Timoshenko-Type Shells with Free Edges\",\"authors\":\"S. N. Timergaliev\",\"doi\":\"10.1134/S1990478923040154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We study the existence of solutions of a boundary value problem for a system of nonlinear\\nsecond-order partial differential equations for the generalized displacements under given nonlinear\\nboundary conditions that describes the equilibrium state of elastic nonshallow isotropic\\ninhomogeneous shells of zero Gaussian curvature with free edges in the framework of the\\nTimoshenko shear model. The research method is based on integral representations for generalized\\ndisplacements containing arbitrary functions that allow the original boundary value problem to be\\nreduced to a nonlinear operator equation for generalized displacements in the Sobolev space. The\\nsolvability of the operator equation is established using the contraction mapping principle.\\n</p>\",\"PeriodicalId\":607,\"journal\":{\"name\":\"Journal of Applied and Industrial Mathematics\",\"volume\":\"17 4\",\"pages\":\"874 - 891\"},\"PeriodicalIF\":0.5800,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990478923040154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1990478923040154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们研究了在给定非线性边界条件下广义位移的非线性二阶偏微分方程系的边界值问题解的存在性,该边界值问题描述了具有自由边缘的零高斯曲率弹性非浅各向同性均质壳在季莫申科剪切模型框架下的平衡状态。研究方法基于包含任意函数的广义位移积分表示法,可将原始边界值问题简化为索博廖夫空间中广义位移的非线性算子方程。利用收缩映射原理确定了算子方程的可解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Existence of Solutions of Nonlinear Boundary Value Problems for Nonshallow Timoshenko-Type Shells with Free Edges

We study the existence of solutions of a boundary value problem for a system of nonlinear second-order partial differential equations for the generalized displacements under given nonlinear boundary conditions that describes the equilibrium state of elastic nonshallow isotropic inhomogeneous shells of zero Gaussian curvature with free edges in the framework of the Timoshenko shear model. The research method is based on integral representations for generalized displacements containing arbitrary functions that allow the original boundary value problem to be reduced to a nonlinear operator equation for generalized displacements in the Sobolev space. The solvability of the operator equation is established using the contraction mapping principle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied and Industrial Mathematics
Journal of Applied and Industrial Mathematics Engineering-Industrial and Manufacturing Engineering
CiteScore
1.00
自引率
0.00%
发文量
16
期刊介绍: Journal of Applied and Industrial Mathematics  is a journal that publishes original and review articles containing theoretical results and those of interest for applications in various branches of industry. The journal topics include the qualitative theory of differential equations in application to mechanics, physics, chemistry, biology, technical and natural processes; mathematical modeling in mechanics, physics, engineering, chemistry, biology, ecology, medicine, etc.; control theory; discrete optimization; discrete structures and extremum problems; combinatorics; control and reliability of discrete circuits; mathematical programming; mathematical models and methods for making optimal decisions; models of theory of scheduling, location and replacement of equipment; modeling the control processes; development and analysis of algorithms; synthesis and complexity of control systems; automata theory; graph theory; game theory and its applications; coding theory; scheduling theory; and theory of circuits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信