恶意行为的时间评估:应用于道岔现场数据监测

Sara Abdellaoui, Emil Dumitrescu, Cédric Escudero, Eric Zamaï
{"title":"恶意行为的时间评估:应用于道岔现场数据监测","authors":"Sara Abdellaoui, Emil Dumitrescu, Cédric Escudero, Eric Zamaï","doi":"arxiv-2405.02346","DOIUrl":null,"url":null,"abstract":"Monitored data collected from railway turnouts are vulnerable to\ncyberattacks: attackers may either conceal failures or trigger unnecessary\nmaintenance actions. To address this issue, a cyberattack investigation method\nis proposed based on predictions made from the temporal evolution of the\nturnout behavior. These predictions are then compared to the field acquired\ndata to detect any discrepancy. This method is illustrated on a collection of\nreal-life data.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal assessment of malicious behaviors: application to turnout field data monitoring\",\"authors\":\"Sara Abdellaoui, Emil Dumitrescu, Cédric Escudero, Eric Zamaï\",\"doi\":\"arxiv-2405.02346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitored data collected from railway turnouts are vulnerable to\\ncyberattacks: attackers may either conceal failures or trigger unnecessary\\nmaintenance actions. To address this issue, a cyberattack investigation method\\nis proposed based on predictions made from the temporal evolution of the\\nturnout behavior. These predictions are then compared to the field acquired\\ndata to detect any discrepancy. This method is illustrated on a collection of\\nreal-life data.\",\"PeriodicalId\":501062,\"journal\":{\"name\":\"arXiv - CS - Systems and Control\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.02346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.02346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从铁路道岔收集的监测数据很容易受到网络攻击:攻击者可能会隐藏故障或触发不必要的维护行动。为解决这一问题,提出了一种基于道岔行为时间演变预测的网络攻击调查方法。然后将这些预测与现场获取的数据进行比较,以发现任何差异。该方法在一组真实数据中进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal assessment of malicious behaviors: application to turnout field data monitoring
Monitored data collected from railway turnouts are vulnerable to cyberattacks: attackers may either conceal failures or trigger unnecessary maintenance actions. To address this issue, a cyberattack investigation method is proposed based on predictions made from the temporal evolution of the turnout behavior. These predictions are then compared to the field acquired data to detect any discrepancy. This method is illustrated on a collection of real-life data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信