{"title":"前半纳尔逊代数上的非常真算子","authors":"Shokoofeh Ghorbani","doi":"10.1007/s11225-024-10109-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we use the concept of very true operator to pre-semi-Nelson algebras and investigate the properties of very true pre-semi-Nelson algebras. We study the very true N-deductive systems and use them to establish the uniform structure on very true pre-semi-Nelson algebras. We obtain some properties of this topology. Finally, the corresponding logic very true semi-intuitionistic logic with strong negation is constructed and algebraizable of this logic is proved based on very true semi-Nelson algebras.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Very True Operators on Pre-semi-Nelson Algebras\",\"authors\":\"Shokoofeh Ghorbani\",\"doi\":\"10.1007/s11225-024-10109-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we use the concept of very true operator to pre-semi-Nelson algebras and investigate the properties of very true pre-semi-Nelson algebras. We study the very true N-deductive systems and use them to establish the uniform structure on very true pre-semi-Nelson algebras. We obtain some properties of this topology. Finally, the corresponding logic very true semi-intuitionistic logic with strong negation is constructed and algebraizable of this logic is proved based on very true semi-Nelson algebras.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11225-024-10109-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-024-10109-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们将非常真算子的概念用于前半-尼尔逊代数,并研究了非常真前半-尼尔逊代数的性质。我们研究了非常真 N 演绎系统,并利用它们建立了非常真前半纳尔逊代数的统一结构。我们获得了这一拓扑的一些性质。最后,我们构建了相应的具有强否定的非常真半直觉逻辑,并基于非常真半纳尔逊数组证明了该逻辑的可代数性。
In this paper, we use the concept of very true operator to pre-semi-Nelson algebras and investigate the properties of very true pre-semi-Nelson algebras. We study the very true N-deductive systems and use them to establish the uniform structure on very true pre-semi-Nelson algebras. We obtain some properties of this topology. Finally, the corresponding logic very true semi-intuitionistic logic with strong negation is constructed and algebraizable of this logic is proved based on very true semi-Nelson algebras.