多项式奥恩斯坦-乌伦贝克波动率模型中的傅立叶-拉普拉斯变换

Eduardo Abi JaberXiaoyuan, ShaunXiaoyuan, Li, Xuyang Lin
{"title":"多项式奥恩斯坦-乌伦贝克波动率模型中的傅立叶-拉普拉斯变换","authors":"Eduardo Abi JaberXiaoyuan, ShaunXiaoyuan, Li, Xuyang Lin","doi":"arxiv-2405.02170","DOIUrl":null,"url":null,"abstract":"We consider the Fourier-Laplace transforms of a broad class of polynomial\nOrnstein-Uhlenbeck (OU) volatility models, including the well-known\nStein-Stein, Sch\\\"obel-Zhu, one-factor Bergomi, and the recently introduced\nQuintic OU models motivated by the SPX-VIX joint calibration problem. We show\nthe connection between the joint Fourier-Laplace functional of the log-price\nand the integrated variance, and the solution of an infinite dimensional\nRiccati equation. Next, under some non-vanishing conditions of the\nFourier-Laplace transforms, we establish an existence result for such Riccati\nequation and we provide a discretized approximation of the joint characteristic\nfunctional that is exponentially entire. On the practical side, we develop a\nnumerical scheme to solve the stiff infinite dimensional Riccati equations and\ndemonstrate the efficiency and accuracy of the scheme for pricing SPX options\nand volatility swaps using Fourier and Laplace inversions, with specific\nexamples of the Quintic OU and the one-factor Bergomi models and their\ncalibration to real market data.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fourier-Laplace transforms in polynomial Ornstein-Uhlenbeck volatility models\",\"authors\":\"Eduardo Abi JaberXiaoyuan, ShaunXiaoyuan, Li, Xuyang Lin\",\"doi\":\"arxiv-2405.02170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Fourier-Laplace transforms of a broad class of polynomial\\nOrnstein-Uhlenbeck (OU) volatility models, including the well-known\\nStein-Stein, Sch\\\\\\\"obel-Zhu, one-factor Bergomi, and the recently introduced\\nQuintic OU models motivated by the SPX-VIX joint calibration problem. We show\\nthe connection between the joint Fourier-Laplace functional of the log-price\\nand the integrated variance, and the solution of an infinite dimensional\\nRiccati equation. Next, under some non-vanishing conditions of the\\nFourier-Laplace transforms, we establish an existence result for such Riccati\\nequation and we provide a discretized approximation of the joint characteristic\\nfunctional that is exponentially entire. On the practical side, we develop a\\nnumerical scheme to solve the stiff infinite dimensional Riccati equations and\\ndemonstrate the efficiency and accuracy of the scheme for pricing SPX options\\nand volatility swaps using Fourier and Laplace inversions, with specific\\nexamples of the Quintic OU and the one-factor Bergomi models and their\\ncalibration to real market data.\",\"PeriodicalId\":501294,\"journal\":{\"name\":\"arXiv - QuantFin - Computational Finance\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.02170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.02170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一大类多项式奥恩斯坦-乌伦贝克(OU)波动率模型的傅里叶-拉普拉斯变换,包括著名的斯坦-斯坦(Stein-Stein)模型、施奥贝尔-朱(Sch\"obel-Zhu)模型、单因子贝戈米(Bergomi)模型,以及最近由 SPX-VIX 联合校准问题激发而引入的昆特 OU 模型。我们展示了对数价格和综合方差的联合傅立叶-拉普拉斯函数与无限维里卡蒂方程的解之间的联系。接下来,在傅里叶-拉普拉斯变换的一些非消失条件下,我们建立了这种里卡提方程的存在性结果,并提供了指数整数的联合特征函数的离散近似值。在实际应用方面,我们开发了一种数值方案来求解僵硬的无限维 Riccati 方程,并利用傅里叶和拉普拉斯反演演示了该方案在 SPX 期权和波动率掉期定价方面的效率和准确性,并以 Quintic OU 和单因子 Bergomi 模型及其与真实市场数据的校准为例进行了具体说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fourier-Laplace transforms in polynomial Ornstein-Uhlenbeck volatility models
We consider the Fourier-Laplace transforms of a broad class of polynomial Ornstein-Uhlenbeck (OU) volatility models, including the well-known Stein-Stein, Sch\"obel-Zhu, one-factor Bergomi, and the recently introduced Quintic OU models motivated by the SPX-VIX joint calibration problem. We show the connection between the joint Fourier-Laplace functional of the log-price and the integrated variance, and the solution of an infinite dimensional Riccati equation. Next, under some non-vanishing conditions of the Fourier-Laplace transforms, we establish an existence result for such Riccati equation and we provide a discretized approximation of the joint characteristic functional that is exponentially entire. On the practical side, we develop a numerical scheme to solve the stiff infinite dimensional Riccati equations and demonstrate the efficiency and accuracy of the scheme for pricing SPX options and volatility swaps using Fourier and Laplace inversions, with specific examples of the Quintic OU and the one-factor Bergomi models and their calibration to real market data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信