Ismael Calomino, Sergio A. Celani, Hernán J. San Martín
{"title":"论弱路易斯分布网格","authors":"Ismael Calomino, Sergio A. Celani, Hernán J. San Martín","doi":"10.1007/s11225-024-10112-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study the variety <span>\\(\\textsf{WL}\\)</span> of bounded distributive lattices endowed with an implication, called weak Lewis distributive lattices. This variety corresponds to the algebraic semantics of the <span>\\(\\{\\vee ,\\wedge ,\\Rightarrow ,\\bot ,\\top \\}\\)</span>-fragment of the arithmetical base preservativity logic <span>\\(\\mathsf {iP^{-}}\\)</span>. The variety <span>\\(\\textsf{WL}\\)</span> properly contains the variety of bounded distributive lattices with strict implication, also known as weak Heyting algebras. We introduce the notion of WL-frame and we prove a representation theorem for WL-lattices by means of WL-frames. We extended this representation to a topological duality by means of Priestley spaces endowed with a special neighbourhood relation between points and closed upsets of the space. These results are applied in order to give a representation and a topological duality for the variety of weak Heyting–Lewis algebras, i.e., for the algebraic semantics of the arithmetical base preservativity logic <span>\\(\\textsf{iP}^{-}\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Weak Lewis Distributive Lattices\",\"authors\":\"Ismael Calomino, Sergio A. Celani, Hernán J. San Martín\",\"doi\":\"10.1007/s11225-024-10112-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we study the variety <span>\\\\(\\\\textsf{WL}\\\\)</span> of bounded distributive lattices endowed with an implication, called weak Lewis distributive lattices. This variety corresponds to the algebraic semantics of the <span>\\\\(\\\\{\\\\vee ,\\\\wedge ,\\\\Rightarrow ,\\\\bot ,\\\\top \\\\}\\\\)</span>-fragment of the arithmetical base preservativity logic <span>\\\\(\\\\mathsf {iP^{-}}\\\\)</span>. The variety <span>\\\\(\\\\textsf{WL}\\\\)</span> properly contains the variety of bounded distributive lattices with strict implication, also known as weak Heyting algebras. We introduce the notion of WL-frame and we prove a representation theorem for WL-lattices by means of WL-frames. We extended this representation to a topological duality by means of Priestley spaces endowed with a special neighbourhood relation between points and closed upsets of the space. These results are applied in order to give a representation and a topological duality for the variety of weak Heyting–Lewis algebras, i.e., for the algebraic semantics of the arithmetical base preservativity logic <span>\\\\(\\\\textsf{iP}^{-}\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11225-024-10112-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-024-10112-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we study the variety \(\textsf{WL}\) of bounded distributive lattices endowed with an implication, called weak Lewis distributive lattices. This variety corresponds to the algebraic semantics of the \(\{\vee ,\wedge ,\Rightarrow ,\bot ,\top \}\)-fragment of the arithmetical base preservativity logic \(\mathsf {iP^{-}}\). The variety \(\textsf{WL}\) properly contains the variety of bounded distributive lattices with strict implication, also known as weak Heyting algebras. We introduce the notion of WL-frame and we prove a representation theorem for WL-lattices by means of WL-frames. We extended this representation to a topological duality by means of Priestley spaces endowed with a special neighbourhood relation between points and closed upsets of the space. These results are applied in order to give a representation and a topological duality for the variety of weak Heyting–Lewis algebras, i.e., for the algebraic semantics of the arithmetical base preservativity logic \(\textsf{iP}^{-}\).