论弱路易斯分布网格

Pub Date : 2024-05-03 DOI:10.1007/s11225-024-10112-6
Ismael Calomino, Sergio A. Celani, Hernán J. San Martín
{"title":"论弱路易斯分布网格","authors":"Ismael Calomino, Sergio A. Celani, Hernán J. San Martín","doi":"10.1007/s11225-024-10112-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study the variety <span>\\(\\textsf{WL}\\)</span> of bounded distributive lattices endowed with an implication, called weak Lewis distributive lattices. This variety corresponds to the algebraic semantics of the <span>\\(\\{\\vee ,\\wedge ,\\Rightarrow ,\\bot ,\\top \\}\\)</span>-fragment of the arithmetical base preservativity logic <span>\\(\\mathsf {iP^{-}}\\)</span>. The variety <span>\\(\\textsf{WL}\\)</span> properly contains the variety of bounded distributive lattices with strict implication, also known as weak Heyting algebras. We introduce the notion of WL-frame and we prove a representation theorem for WL-lattices by means of WL-frames. We extended this representation to a topological duality by means of Priestley spaces endowed with a special neighbourhood relation between points and closed upsets of the space. These results are applied in order to give a representation and a topological duality for the variety of weak Heyting–Lewis algebras, i.e., for the algebraic semantics of the arithmetical base preservativity logic <span>\\(\\textsf{iP}^{-}\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Weak Lewis Distributive Lattices\",\"authors\":\"Ismael Calomino, Sergio A. Celani, Hernán J. San Martín\",\"doi\":\"10.1007/s11225-024-10112-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we study the variety <span>\\\\(\\\\textsf{WL}\\\\)</span> of bounded distributive lattices endowed with an implication, called weak Lewis distributive lattices. This variety corresponds to the algebraic semantics of the <span>\\\\(\\\\{\\\\vee ,\\\\wedge ,\\\\Rightarrow ,\\\\bot ,\\\\top \\\\}\\\\)</span>-fragment of the arithmetical base preservativity logic <span>\\\\(\\\\mathsf {iP^{-}}\\\\)</span>. The variety <span>\\\\(\\\\textsf{WL}\\\\)</span> properly contains the variety of bounded distributive lattices with strict implication, also known as weak Heyting algebras. We introduce the notion of WL-frame and we prove a representation theorem for WL-lattices by means of WL-frames. We extended this representation to a topological duality by means of Priestley spaces endowed with a special neighbourhood relation between points and closed upsets of the space. These results are applied in order to give a representation and a topological duality for the variety of weak Heyting–Lewis algebras, i.e., for the algebraic semantics of the arithmetical base preservativity logic <span>\\\\(\\\\textsf{iP}^{-}\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11225-024-10112-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-024-10112-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了蕴含着蕴涵的有界分布格的种类(textsf{WL}\),称为弱路易斯分布格。这个种类对应于算基保留逻辑 \(\mathsf {iP^{-}} 的 \(\{vee ,\wedge ,\Rightarrow ,\bot ,\top \}\)-片段的代数语义。)(\mathsf{iP^{-}}\)-碎片正确地包含了具有严格蕴涵的有界分布格的碎片,也被称为弱海丁格。我们引入了 WL 框架的概念,并通过 WL 框架证明了 WL 格的表示定理。我们通过普里斯特里空间(Priestley space)将这种表示法扩展到拓扑对偶性,并在空间的点和闭合颠倒点之间赋予了特殊的邻域关系。应用这些结果是为了给出弱海廷-刘易斯代数的表示法和拓扑对偶性,即算术基保留逻辑的代数语义(\textsf{iP}^{-}\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Weak Lewis Distributive Lattices

In this paper we study the variety \(\textsf{WL}\) of bounded distributive lattices endowed with an implication, called weak Lewis distributive lattices. This variety corresponds to the algebraic semantics of the \(\{\vee ,\wedge ,\Rightarrow ,\bot ,\top \}\)-fragment of the arithmetical base preservativity logic \(\mathsf {iP^{-}}\). The variety \(\textsf{WL}\) properly contains the variety of bounded distributive lattices with strict implication, also known as weak Heyting algebras. We introduce the notion of WL-frame and we prove a representation theorem for WL-lattices by means of WL-frames. We extended this representation to a topological duality by means of Priestley spaces endowed with a special neighbourhood relation between points and closed upsets of the space. These results are applied in order to give a representation and a topological duality for the variety of weak Heyting–Lewis algebras, i.e., for the algebraic semantics of the arithmetical base preservativity logic \(\textsf{iP}^{-}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信