用于射频传播预测的物理信息生成神经网络在室内人体感知中的应用

Federica Fieramosca, Vittorio Rampa, Michele D'Amico, Stefano Savazzi
{"title":"用于射频传播预测的物理信息生成神经网络在室内人体感知中的应用","authors":"Federica Fieramosca, Vittorio Rampa, Michele D'Amico, Stefano Savazzi","doi":"arxiv-2405.02131","DOIUrl":null,"url":null,"abstract":"Electromagnetic (EM) body models designed to predict Radio-Frequency (RF)\npropagation are time-consuming methods which prevent their adoption in strict\nreal-time computational imaging problems, such as human body localization and\nsensing. Physics-informed Generative Neural Network (GNN) models have been\nrecently proposed to reproduce EM effects, namely to simulate or reconstruct\nmissing data or samples by incorporating relevant EM principles and\nconstraints. The paper discusses a Variational Auto-Encoder (VAE) model which\nis trained to reproduce the effects of human motions on the EM field and\nincorporate EM body diffraction principles. Proposed physics-informed\ngenerative neural network models are verified against both classical\ndiffraction-based EM tools and full-wave EM body simulations.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-informed generative neural networks for RF propagation prediction with application to indoor body perception\",\"authors\":\"Federica Fieramosca, Vittorio Rampa, Michele D'Amico, Stefano Savazzi\",\"doi\":\"arxiv-2405.02131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromagnetic (EM) body models designed to predict Radio-Frequency (RF)\\npropagation are time-consuming methods which prevent their adoption in strict\\nreal-time computational imaging problems, such as human body localization and\\nsensing. Physics-informed Generative Neural Network (GNN) models have been\\nrecently proposed to reproduce EM effects, namely to simulate or reconstruct\\nmissing data or samples by incorporating relevant EM principles and\\nconstraints. The paper discusses a Variational Auto-Encoder (VAE) model which\\nis trained to reproduce the effects of human motions on the EM field and\\nincorporate EM body diffraction principles. Proposed physics-informed\\ngenerative neural network models are verified against both classical\\ndiffraction-based EM tools and full-wave EM body simulations.\",\"PeriodicalId\":501062,\"journal\":{\"name\":\"arXiv - CS - Systems and Control\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.02131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.02131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

旨在预测射频传播的电磁(EM)人体模型是一种耗时的方法,因此无法用于严格的实时计算成像问题,如人体定位和传感。最近有人提出了物理信息生成神经网络(GNN)模型来重现电磁效应,即通过纳入相关电磁原理和约束条件来模拟或重建缺失的数据或样本。本文讨论了一种变异自动编码器(VAE)模型,该模型经过训练可再现人体运动对电磁场的影响,并结合电磁体衍射原理。根据基于衍射的经典电磁工具和全波电磁体模拟,对提出的物理信息生成神经网络模型进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics-informed generative neural networks for RF propagation prediction with application to indoor body perception
Electromagnetic (EM) body models designed to predict Radio-Frequency (RF) propagation are time-consuming methods which prevent their adoption in strict real-time computational imaging problems, such as human body localization and sensing. Physics-informed Generative Neural Network (GNN) models have been recently proposed to reproduce EM effects, namely to simulate or reconstruct missing data or samples by incorporating relevant EM principles and constraints. The paper discusses a Variational Auto-Encoder (VAE) model which is trained to reproduce the effects of human motions on the EM field and incorporate EM body diffraction principles. Proposed physics-informed generative neural network models are verified against both classical diffraction-based EM tools and full-wave EM body simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信