不确定性条件下的运动规划:将基于学习的多模式预测器集成到分支模型预测控制中

Mohamed-Khalil Bouzidi, Bojan Derajic, Daniel Goehring, Joerg Reichardt
{"title":"不确定性条件下的运动规划:将基于学习的多模式预测器集成到分支模型预测控制中","authors":"Mohamed-Khalil Bouzidi, Bojan Derajic, Daniel Goehring, Joerg Reichardt","doi":"arxiv-2405.03470","DOIUrl":null,"url":null,"abstract":"In complex traffic environments, autonomous vehicles face multi-modal\nuncertainty about other agents' future behavior. To address this, recent\nadvancements in learningbased motion predictors output multi-modal predictions.\nWe present our novel framework that leverages Branch Model Predictive\nControl(BMPC) to account for these predictions. The framework includes an\nonline scenario-selection process guided by topology and collision risk\ncriteria. This efficiently selects a minimal set of predictions, rendering the\nBMPC realtime capable. Additionally, we introduce an adaptive decision\npostponing strategy that delays the planner's commitment to a single scenario\nuntil the uncertainty is resolved. Our comprehensive evaluations in traffic\nintersection and random highway merging scenarios demonstrate enhanced comfort\nand safety through our method.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motion Planning under Uncertainty: Integrating Learning-Based Multi-Modal Predictors into Branch Model Predictive Control\",\"authors\":\"Mohamed-Khalil Bouzidi, Bojan Derajic, Daniel Goehring, Joerg Reichardt\",\"doi\":\"arxiv-2405.03470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In complex traffic environments, autonomous vehicles face multi-modal\\nuncertainty about other agents' future behavior. To address this, recent\\nadvancements in learningbased motion predictors output multi-modal predictions.\\nWe present our novel framework that leverages Branch Model Predictive\\nControl(BMPC) to account for these predictions. The framework includes an\\nonline scenario-selection process guided by topology and collision risk\\ncriteria. This efficiently selects a minimal set of predictions, rendering the\\nBMPC realtime capable. Additionally, we introduce an adaptive decision\\npostponing strategy that delays the planner's commitment to a single scenario\\nuntil the uncertainty is resolved. Our comprehensive evaluations in traffic\\nintersection and random highway merging scenarios demonstrate enhanced comfort\\nand safety through our method.\",\"PeriodicalId\":501062,\"journal\":{\"name\":\"arXiv - CS - Systems and Control\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.03470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.03470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在复杂的交通环境中,自动驾驶车辆面临着其他驾驶员未来行为的多模态不确定性。为了解决这个问题,基于学习的运动预测器最近取得了进步,可以输出多模式预测。我们提出了新颖的框架,利用分支模型预测控制(BMPC)来考虑这些预测。该框架包括一个以拓扑和碰撞风险标准为指导的在线场景选择过程。这能有效地选择最小的预测集,使 BMPC 具备实时能力。此外,我们还引入了一种自适应决策推迟策略,在不确定性得到解决之前,推迟规划者对单一场景的承诺。我们在交通路口和随机高速公路合并场景中进行的综合评估表明,我们的方法提高了舒适性和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion Planning under Uncertainty: Integrating Learning-Based Multi-Modal Predictors into Branch Model Predictive Control
In complex traffic environments, autonomous vehicles face multi-modal uncertainty about other agents' future behavior. To address this, recent advancements in learningbased motion predictors output multi-modal predictions. We present our novel framework that leverages Branch Model Predictive Control(BMPC) to account for these predictions. The framework includes an online scenario-selection process guided by topology and collision risk criteria. This efficiently selects a minimal set of predictions, rendering the BMPC realtime capable. Additionally, we introduce an adaptive decision postponing strategy that delays the planner's commitment to a single scenario until the uncertainty is resolved. Our comprehensive evaluations in traffic intersection and random highway merging scenarios demonstrate enhanced comfort and safety through our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信