基于 ReLU-ANN 的 MILP 表示的约束反馈线性化控制

Huu-Thinh Do, Ionela Prodan
{"title":"基于 ReLU-ANN 的 MILP 表示的约束反馈线性化控制","authors":"Huu-Thinh Do, Ionela Prodan","doi":"arxiv-2405.03334","DOIUrl":null,"url":null,"abstract":"In this work, we explore the efficacy of rectified linear unit artificial\nneural networks in addressing the intricate challenges of convoluted\nconstraints arising from feedback linearization mapping. Our approach involves\na comprehensive procedure, encompassing the approximation of constraints\nthrough a regression process. Subsequently, we transform these constraints into\nan equivalent representation of mixed-integer linear constraints, seamlessly\nintegrating them into other stabilizing control architectures. The advantage\nresides in the compatibility with the linear control design and the constraint\nsatisfaction in the model predictive control setup, even for forecasted\ntrajectories. Simulations are provided to validate the proposed constraint\nreformulation.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"91 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the constrained feedback linearization control based on the MILP representation of a ReLU-ANN\",\"authors\":\"Huu-Thinh Do, Ionela Prodan\",\"doi\":\"arxiv-2405.03334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we explore the efficacy of rectified linear unit artificial\\nneural networks in addressing the intricate challenges of convoluted\\nconstraints arising from feedback linearization mapping. Our approach involves\\na comprehensive procedure, encompassing the approximation of constraints\\nthrough a regression process. Subsequently, we transform these constraints into\\nan equivalent representation of mixed-integer linear constraints, seamlessly\\nintegrating them into other stabilizing control architectures. The advantage\\nresides in the compatibility with the linear control design and the constraint\\nsatisfaction in the model predictive control setup, even for forecasted\\ntrajectories. Simulations are provided to validate the proposed constraint\\nreformulation.\",\"PeriodicalId\":501062,\"journal\":{\"name\":\"arXiv - CS - Systems and Control\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.03334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.03334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们探索了整流线性单元人工神经网络在应对反馈线性化映射所产生的错综复杂的约束挑战方面的功效。我们的方法涉及一个全面的程序,包括通过回归过程逼近约束条件。随后,我们将这些约束转化为混合整数线性约束的等效表示,将其无缝集成到其他稳定控制架构中。其优势在于与线性控制设计的兼容性,以及模型预测控制设置中的约束满足性,甚至对预测轨迹也是如此。仿真验证了所提出的约束重构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the constrained feedback linearization control based on the MILP representation of a ReLU-ANN
In this work, we explore the efficacy of rectified linear unit artificial neural networks in addressing the intricate challenges of convoluted constraints arising from feedback linearization mapping. Our approach involves a comprehensive procedure, encompassing the approximation of constraints through a regression process. Subsequently, we transform these constraints into an equivalent representation of mixed-integer linear constraints, seamlessly integrating them into other stabilizing control architectures. The advantage resides in the compatibility with the linear control design and the constraint satisfaction in the model predictive control setup, even for forecasted trajectories. Simulations are provided to validate the proposed constraint reformulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信