物理人机交互的 "尊重人的可变性 "优化控制

Sean Kille, Paul Leibold, Philipp Karg, Balint Varga, Sören Hohmann
{"title":"物理人机交互的 \"尊重人的可变性 \"优化控制","authors":"Sean Kille, Paul Leibold, Philipp Karg, Balint Varga, Sören Hohmann","doi":"arxiv-2405.03502","DOIUrl":null,"url":null,"abstract":"Physical Human-Machine Interaction plays a pivotal role in facilitating\ncollaboration across various domains. When designing appropriate model-based\ncontrollers to assist a human in the interaction, the accuracy of the human\nmodel is crucial for the resulting overall behavior of the coupled system. When\nlooking at state-of-the-art control approaches, most methods rely on a\ndeterministic model or no model at all of the human behavior. This poses a gap\nto the current neuroscientific standard regarding human movement modeling,\nwhich uses stochastic optimal control models that include signal-dependent\nnoise processes and therefore describe the human behavior much more accurate\nthan the deterministic counterparts. To close this gap by including these\nstochastic human models in the control design, we introduce a novel design\nmethodology resulting in a Human-Variability-Respecting Optimal Control that\nexplicitly incorporates the human noise processes and their influence on the\nmean and variability behavior of a physically coupled human-machine system. Our\napproach results in an improved overall system performance, i.e. higher\naccuracy and lower variability in target point reaching, while allowing to\nshape the joint variability, for example to preserve human natural variability\npatterns.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human-Variability-Respecting Optimal Control for Physical Human-Machine Interaction\",\"authors\":\"Sean Kille, Paul Leibold, Philipp Karg, Balint Varga, Sören Hohmann\",\"doi\":\"arxiv-2405.03502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical Human-Machine Interaction plays a pivotal role in facilitating\\ncollaboration across various domains. When designing appropriate model-based\\ncontrollers to assist a human in the interaction, the accuracy of the human\\nmodel is crucial for the resulting overall behavior of the coupled system. When\\nlooking at state-of-the-art control approaches, most methods rely on a\\ndeterministic model or no model at all of the human behavior. This poses a gap\\nto the current neuroscientific standard regarding human movement modeling,\\nwhich uses stochastic optimal control models that include signal-dependent\\nnoise processes and therefore describe the human behavior much more accurate\\nthan the deterministic counterparts. To close this gap by including these\\nstochastic human models in the control design, we introduce a novel design\\nmethodology resulting in a Human-Variability-Respecting Optimal Control that\\nexplicitly incorporates the human noise processes and their influence on the\\nmean and variability behavior of a physically coupled human-machine system. Our\\napproach results in an improved overall system performance, i.e. higher\\naccuracy and lower variability in target point reaching, while allowing to\\nshape the joint variability, for example to preserve human natural variability\\npatterns.\",\"PeriodicalId\":501062,\"journal\":{\"name\":\"arXiv - CS - Systems and Control\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.03502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.03502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物理人机交互(Physical Human-Machine Interaction)在促进不同领域的协作方面发挥着举足轻重的作用。在设计适当的基于模型的控制器以协助人类进行交互时,人类模型的准确性对于耦合系统的整体行为至关重要。纵观最先进的控制方法,大多数方法都依赖于人类行为的非确定性模型或根本没有模型。这与当前神经科学的人体运动建模标准存在差距,后者使用的随机最优控制模型包含信号相关噪声过程,因此对人体行为的描述比确定性模型更加精确。为了缩小这一差距,我们引入了一种新颖的设计方法,将人类噪声过程及其对物理耦合人机系统的主题和变异性行为的影响纳入到控制设计中,从而产生了尊重人类变异性的最优控制。我们的方法提高了系统的整体性能,即在到达目标点时具有更高的准确性和更低的变异性,同时允许塑造关节变异性,例如保留人类的自然变异模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human-Variability-Respecting Optimal Control for Physical Human-Machine Interaction
Physical Human-Machine Interaction plays a pivotal role in facilitating collaboration across various domains. When designing appropriate model-based controllers to assist a human in the interaction, the accuracy of the human model is crucial for the resulting overall behavior of the coupled system. When looking at state-of-the-art control approaches, most methods rely on a deterministic model or no model at all of the human behavior. This poses a gap to the current neuroscientific standard regarding human movement modeling, which uses stochastic optimal control models that include signal-dependent noise processes and therefore describe the human behavior much more accurate than the deterministic counterparts. To close this gap by including these stochastic human models in the control design, we introduce a novel design methodology resulting in a Human-Variability-Respecting Optimal Control that explicitly incorporates the human noise processes and their influence on the mean and variability behavior of a physically coupled human-machine system. Our approach results in an improved overall system performance, i.e. higher accuracy and lower variability in target point reaching, while allowing to shape the joint variability, for example to preserve human natural variability patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信