RIS 辅助抗干扰通信中的联合功率控制和无源波束成形优化

IF 2.7 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yang Liu, Kui Xu, Xiaochen Xia, Wei Xie, Nan Ma, Jianhui Xu
{"title":"RIS 辅助抗干扰通信中的联合功率控制和无源波束成形优化","authors":"Yang Liu, Kui Xu, Xiaochen Xia, Wei Xie, Nan Ma, Jianhui Xu","doi":"10.1631/fitee.2200646","DOIUrl":null,"url":null,"abstract":"<p>Due to the openness of the wireless propagation environment, wireless networks are highly susceptible to malicious jamming, which significantly impacts their legitimate communication performance. This study investigates a reconfigurable intelligent surface (RIS) assisted anti-jamming communication system. Specifically, the objective is to enhance the system’s anti-jamming performance by optimizing the transmitting power of the base station and the passive beamforming of the RIS. Taking into account the dynamic and unpredictable nature of a smart jammer, the problem of joint optimization of transmitting power and RIS reflection coefficients is modeled as a Markov decision process (MDP). To tackle the complex and coupled decision problem, we propose a learning framework based on the double deep Q-network (DDQN) to improve the system achievable rate and energy efficiency. Unlike most power-domain jamming mitigation methods that require information on the jamming power, the proposed DDQN algorithm is better able to adapt to dynamic and unknown environments without relying on the prior information about jamming power. Finally, simulation results demonstrate that the proposed algorithm outperforms multi-armed bandit (MAB) and deep Q-network (DQN) schemes in terms of the anti-jamming performance and energy efficiency.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"9 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint power control and passive beamforming optimization in RIS-assisted anti-jamming communication\",\"authors\":\"Yang Liu, Kui Xu, Xiaochen Xia, Wei Xie, Nan Ma, Jianhui Xu\",\"doi\":\"10.1631/fitee.2200646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to the openness of the wireless propagation environment, wireless networks are highly susceptible to malicious jamming, which significantly impacts their legitimate communication performance. This study investigates a reconfigurable intelligent surface (RIS) assisted anti-jamming communication system. Specifically, the objective is to enhance the system’s anti-jamming performance by optimizing the transmitting power of the base station and the passive beamforming of the RIS. Taking into account the dynamic and unpredictable nature of a smart jammer, the problem of joint optimization of transmitting power and RIS reflection coefficients is modeled as a Markov decision process (MDP). To tackle the complex and coupled decision problem, we propose a learning framework based on the double deep Q-network (DDQN) to improve the system achievable rate and energy efficiency. Unlike most power-domain jamming mitigation methods that require information on the jamming power, the proposed DDQN algorithm is better able to adapt to dynamic and unknown environments without relying on the prior information about jamming power. Finally, simulation results demonstrate that the proposed algorithm outperforms multi-armed bandit (MAB) and deep Q-network (DQN) schemes in terms of the anti-jamming performance and energy efficiency.</p>\",\"PeriodicalId\":12608,\"journal\":{\"name\":\"Frontiers of Information Technology & Electronic Engineering\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Information Technology & Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/fitee.2200646\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2200646","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于无线传播环境的开放性,无线网络极易受到恶意干扰,严重影响其合法通信性能。本研究探讨了一种可重构智能表面(RIS)辅助抗干扰通信系统。具体来说,目的是通过优化基站的发射功率和 RIS 的无源波束成形来增强系统的抗干扰性能。考虑到智能干扰器的动态性和不可预测性,发射功率和 RIS 反射系数的联合优化问题被建模为马尔可夫决策过程(MDP)。为了解决复杂的耦合决策问题,我们提出了一种基于双深度 Q 网络 (DDQN) 的学习框架,以提高系统的可实现率和能效。与大多数需要干扰功率信息的功率域干扰缓解方法不同,所提出的 DDQN 算法能够更好地适应动态和未知环境,而无需依赖干扰功率的先验信息。最后,仿真结果表明,所提出的算法在抗干扰性能和能效方面优于多臂匪特(MAB)和深度 Q 网络(DQN)方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint power control and passive beamforming optimization in RIS-assisted anti-jamming communication

Due to the openness of the wireless propagation environment, wireless networks are highly susceptible to malicious jamming, which significantly impacts their legitimate communication performance. This study investigates a reconfigurable intelligent surface (RIS) assisted anti-jamming communication system. Specifically, the objective is to enhance the system’s anti-jamming performance by optimizing the transmitting power of the base station and the passive beamforming of the RIS. Taking into account the dynamic and unpredictable nature of a smart jammer, the problem of joint optimization of transmitting power and RIS reflection coefficients is modeled as a Markov decision process (MDP). To tackle the complex and coupled decision problem, we propose a learning framework based on the double deep Q-network (DDQN) to improve the system achievable rate and energy efficiency. Unlike most power-domain jamming mitigation methods that require information on the jamming power, the proposed DDQN algorithm is better able to adapt to dynamic and unknown environments without relying on the prior information about jamming power. Finally, simulation results demonstrate that the proposed algorithm outperforms multi-armed bandit (MAB) and deep Q-network (DQN) schemes in terms of the anti-jamming performance and energy efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Information Technology & Electronic Engineering
Frontiers of Information Technology & Electronic Engineering COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.00
自引率
10.00%
发文量
1372
期刊介绍: Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信