Nai Yang, Zhitao Deng, Fangtai Hu, Yi Chao, Lin Wan, Qingfeng Guan, Zhiwei Wei
{"title":"利用街景图像上的眼动数据感知城市","authors":"Nai Yang, Zhitao Deng, Fangtai Hu, Yi Chao, Lin Wan, Qingfeng Guan, Zhiwei Wei","doi":"10.1111/tgis.13172","DOIUrl":null,"url":null,"abstract":"Understanding the spatial distribution patterns of urban perception and analyzing the correlation between human emotional perception and street composition elements are important for accurately understanding how people interact with the urban environment, urban planning, and urban management. Previous studies on urban perception using street view data have not fully considered the actual level of attention to different visual elements when browsing street view images. In this article, we use eye tracking technology to collect eye movement data and subjective perception evaluation data when people browse street view images, and analyze the correlation between the time to first fixation, duration of first fixation, and fixation frequency of different visual elements and the six perceptual outcomes of wealthy, safe, lively, beautiful, boring, and depressing. Furthermore, this article integrates eye movement data with street view semantic data and introduces a novel method for predicting urban perception using a machine learning algorithm. The proposed method outperforms a comparative model that solely relies on semantic data, exhibiting higher accuracy in perception prediction. Additionally, the study presents a perceptual mapping of the prediction results, providing a visual representation of the predicted urban perception outcomes. As vision is the primary perceptual channel, this study achieves a more objective and scientifically reliable urban perception, which is of reference value for the study of physical and mental health due to the urban physical environment.","PeriodicalId":47842,"journal":{"name":"Transactions in GIS","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urban perception by using eye movement data on street view images\",\"authors\":\"Nai Yang, Zhitao Deng, Fangtai Hu, Yi Chao, Lin Wan, Qingfeng Guan, Zhiwei Wei\",\"doi\":\"10.1111/tgis.13172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the spatial distribution patterns of urban perception and analyzing the correlation between human emotional perception and street composition elements are important for accurately understanding how people interact with the urban environment, urban planning, and urban management. Previous studies on urban perception using street view data have not fully considered the actual level of attention to different visual elements when browsing street view images. In this article, we use eye tracking technology to collect eye movement data and subjective perception evaluation data when people browse street view images, and analyze the correlation between the time to first fixation, duration of first fixation, and fixation frequency of different visual elements and the six perceptual outcomes of wealthy, safe, lively, beautiful, boring, and depressing. Furthermore, this article integrates eye movement data with street view semantic data and introduces a novel method for predicting urban perception using a machine learning algorithm. The proposed method outperforms a comparative model that solely relies on semantic data, exhibiting higher accuracy in perception prediction. Additionally, the study presents a perceptual mapping of the prediction results, providing a visual representation of the predicted urban perception outcomes. As vision is the primary perceptual channel, this study achieves a more objective and scientifically reliable urban perception, which is of reference value for the study of physical and mental health due to the urban physical environment.\",\"PeriodicalId\":47842,\"journal\":{\"name\":\"Transactions in GIS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions in GIS\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/tgis.13172\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions in GIS","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/tgis.13172","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
Urban perception by using eye movement data on street view images
Understanding the spatial distribution patterns of urban perception and analyzing the correlation between human emotional perception and street composition elements are important for accurately understanding how people interact with the urban environment, urban planning, and urban management. Previous studies on urban perception using street view data have not fully considered the actual level of attention to different visual elements when browsing street view images. In this article, we use eye tracking technology to collect eye movement data and subjective perception evaluation data when people browse street view images, and analyze the correlation between the time to first fixation, duration of first fixation, and fixation frequency of different visual elements and the six perceptual outcomes of wealthy, safe, lively, beautiful, boring, and depressing. Furthermore, this article integrates eye movement data with street view semantic data and introduces a novel method for predicting urban perception using a machine learning algorithm. The proposed method outperforms a comparative model that solely relies on semantic data, exhibiting higher accuracy in perception prediction. Additionally, the study presents a perceptual mapping of the prediction results, providing a visual representation of the predicted urban perception outcomes. As vision is the primary perceptual channel, this study achieves a more objective and scientifically reliable urban perception, which is of reference value for the study of physical and mental health due to the urban physical environment.
期刊介绍:
Transactions in GIS is an international journal which provides a forum for high quality, original research articles, review articles, short notes and book reviews that focus on: - practical and theoretical issues influencing the development of GIS - the collection, analysis, modelling, interpretation and display of spatial data within GIS - the connections between GIS and related technologies - new GIS applications which help to solve problems affecting the natural or built environments, or business