研究方向对反作用力前沿传播影响的多方位 RBF 方法和渐近分析

IF 0.58 Q3 Engineering
Y. Joundy, H. Rouah, A. Taik
{"title":"研究方向对反作用力前沿传播影响的多方位 RBF 方法和渐近分析","authors":"Y. Joundy,&nbsp;H. Rouah,&nbsp;A. Taik","doi":"10.1134/S1990478923040208","DOIUrl":null,"url":null,"abstract":"<p> In this work, we study the influence of orientation on the stability conditions of the\nreaction front where the monomer is solid and the polymer is liquid. The mathematical model\nincludes the heat equation, the concentration equation and the Navier–Stokes equation under the\nBoussinesq approximation. We use the method proposed by Zeldovich and Frank-Kamenetskii to\nperform asymptotic analysis. We then perform a stability analysis. The linearized problem is\nsolved numerically using a multiquadric radial basis function method (MQ-RBF) to find the\nstability boundary. This will allow us to deduce the influence of each control parameter of the\nproblem on this stability, in particular the angle of inclination of the experimental tube.\n</p>","PeriodicalId":607,"journal":{"name":"Journal of Applied and Industrial Mathematics","volume":"17 4","pages":"943 - 955"},"PeriodicalIF":0.5800,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiquadric RBF Method and Asymptotic Analysis to Study the Influence of Orientation on the Reaction Fronts Propagation\",\"authors\":\"Y. Joundy,&nbsp;H. Rouah,&nbsp;A. Taik\",\"doi\":\"10.1134/S1990478923040208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> In this work, we study the influence of orientation on the stability conditions of the\\nreaction front where the monomer is solid and the polymer is liquid. The mathematical model\\nincludes the heat equation, the concentration equation and the Navier–Stokes equation under the\\nBoussinesq approximation. We use the method proposed by Zeldovich and Frank-Kamenetskii to\\nperform asymptotic analysis. We then perform a stability analysis. The linearized problem is\\nsolved numerically using a multiquadric radial basis function method (MQ-RBF) to find the\\nstability boundary. This will allow us to deduce the influence of each control parameter of the\\nproblem on this stability, in particular the angle of inclination of the experimental tube.\\n</p>\",\"PeriodicalId\":607,\"journal\":{\"name\":\"Journal of Applied and Industrial Mathematics\",\"volume\":\"17 4\",\"pages\":\"943 - 955\"},\"PeriodicalIF\":0.5800,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990478923040208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1990478923040208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在这项工作中,我们研究了取向对单体为固态、聚合物为液态时反应前沿稳定性条件的影响。数学模型包括热方程、浓度方程和布西内斯克近似下的纳维-斯托克斯方程。我们使用 Zeldovich 和 Frank-Kamenetskii 提出的方法进行渐近分析。然后进行稳定性分析。使用多四边形径向基函数法(MQ-RBF)对线性化问题进行数值求解,以找到稳定性边界。这将使我们能够推导出问题的每个控制参数对稳定性的影响,特别是实验管的倾斜角度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiquadric RBF Method and Asymptotic Analysis to Study the Influence of Orientation on the Reaction Fronts Propagation

Multiquadric RBF Method and Asymptotic Analysis to Study the Influence of Orientation on the Reaction Fronts Propagation

In this work, we study the influence of orientation on the stability conditions of the reaction front where the monomer is solid and the polymer is liquid. The mathematical model includes the heat equation, the concentration equation and the Navier–Stokes equation under the Boussinesq approximation. We use the method proposed by Zeldovich and Frank-Kamenetskii to perform asymptotic analysis. We then perform a stability analysis. The linearized problem is solved numerically using a multiquadric radial basis function method (MQ-RBF) to find the stability boundary. This will allow us to deduce the influence of each control parameter of the problem on this stability, in particular the angle of inclination of the experimental tube.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied and Industrial Mathematics
Journal of Applied and Industrial Mathematics Engineering-Industrial and Manufacturing Engineering
CiteScore
1.00
自引率
0.00%
发文量
16
期刊介绍: Journal of Applied and Industrial Mathematics  is a journal that publishes original and review articles containing theoretical results and those of interest for applications in various branches of industry. The journal topics include the qualitative theory of differential equations in application to mechanics, physics, chemistry, biology, technical and natural processes; mathematical modeling in mechanics, physics, engineering, chemistry, biology, ecology, medicine, etc.; control theory; discrete optimization; discrete structures and extremum problems; combinatorics; control and reliability of discrete circuits; mathematical programming; mathematical models and methods for making optimal decisions; models of theory of scheduling, location and replacement of equipment; modeling the control processes; development and analysis of algorithms; synthesis and complexity of control systems; automata theory; graph theory; game theory and its applications; coding theory; scheduling theory; and theory of circuits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信