幂律型动态粘弹性模型的非连续 Galerkin 有限元方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yongseok Jang, Simon Shaw
{"title":"幂律型动态粘弹性模型的非连续 Galerkin 有限元方法","authors":"Yongseok Jang, Simon Shaw","doi":"10.1002/num.23107","DOIUrl":null,"url":null,"abstract":"Linear viscoelasticity can be characterized by a stress relaxation function. We consider a power‐law type stress relaxation to yield a fractional order viscoelasticity model. The governing equation is a Volterra integral problem of the second kind with a weakly singular kernel. We employ spatially discontinuous Galerkin methods, <jats:italic>symmetric interior penalty Galerkin method</jats:italic> (SIPG) for spatial discretization, and the implicit finite difference schemes in time, <jats:italic>Crank–Nicolson method</jats:italic>. Further, in order to manage the weak singularity in the Volterra kernel, we use a linear interpolation technique. We present a priori stability and error analyses without relying on Grönwall's inequality, and so provide high quality bounds that do not increase exponentially in time. This indicates that our numerical scheme is well‐suited for long‐time simulations. Despite the limited regularity in time, we establish suboptimal fractional order accuracy in time as well as optimal convergence of SIPG. We carry out numerical experiments with varying regularity of exact solutions to validate our error estimates. Finally, we present numerical simulations based on real material data.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discontinuous Galerkin finite element method for dynamic viscoelasticity models of power‐law type\",\"authors\":\"Yongseok Jang, Simon Shaw\",\"doi\":\"10.1002/num.23107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear viscoelasticity can be characterized by a stress relaxation function. We consider a power‐law type stress relaxation to yield a fractional order viscoelasticity model. The governing equation is a Volterra integral problem of the second kind with a weakly singular kernel. We employ spatially discontinuous Galerkin methods, <jats:italic>symmetric interior penalty Galerkin method</jats:italic> (SIPG) for spatial discretization, and the implicit finite difference schemes in time, <jats:italic>Crank–Nicolson method</jats:italic>. Further, in order to manage the weak singularity in the Volterra kernel, we use a linear interpolation technique. We present a priori stability and error analyses without relying on Grönwall's inequality, and so provide high quality bounds that do not increase exponentially in time. This indicates that our numerical scheme is well‐suited for long‐time simulations. Despite the limited regularity in time, we establish suboptimal fractional order accuracy in time as well as optimal convergence of SIPG. We carry out numerical experiments with varying regularity of exact solutions to validate our error estimates. Finally, we present numerical simulations based on real material data.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

线性粘弹性可以用应力松弛函数来表征。我们考虑用幂律型应力松弛来产生分数阶粘弹性模型。控制方程是一个具有弱奇异内核的第二类 Volterra 积分问题。我们采用了空间不连续 Galerkin 方法、对称内部惩罚 Galerkin 方法(SIPG)进行空间离散化,以及时间隐式有限差分方案、Crank-Nicolson 方法。此外,为了处理 Volterra 核中的弱奇异性,我们使用了线性插值技术。我们提出了先验稳定性和误差分析,而不依赖于格伦沃尔不等式,因此提供了不会随时间呈指数增长的高质量边界。这表明我们的数值方案非常适合长时间模拟。尽管时间上的正则性有限,我们还是确定了 SIPG 在时间上的次优分数阶精度以及最佳收敛性。我们对精确解的不同规律性进行了数值实验,以验证我们的误差估计。最后,我们介绍了基于真实材料数据的数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discontinuous Galerkin finite element method for dynamic viscoelasticity models of power‐law type
Linear viscoelasticity can be characterized by a stress relaxation function. We consider a power‐law type stress relaxation to yield a fractional order viscoelasticity model. The governing equation is a Volterra integral problem of the second kind with a weakly singular kernel. We employ spatially discontinuous Galerkin methods, symmetric interior penalty Galerkin method (SIPG) for spatial discretization, and the implicit finite difference schemes in time, Crank–Nicolson method. Further, in order to manage the weak singularity in the Volterra kernel, we use a linear interpolation technique. We present a priori stability and error analyses without relying on Grönwall's inequality, and so provide high quality bounds that do not increase exponentially in time. This indicates that our numerical scheme is well‐suited for long‐time simulations. Despite the limited regularity in time, we establish suboptimal fractional order accuracy in time as well as optimal convergence of SIPG. We carry out numerical experiments with varying regularity of exact solutions to validate our error estimates. Finally, we present numerical simulations based on real material data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信