超凯勒变类的有理霍奇等分线是代数的

IF 1.3 1区 数学 Q1 MATHEMATICS
Eyal Markman
{"title":"超凯勒变类的有理霍奇等分线是代数的","authors":"Eyal Markman","doi":"10.1112/s0010437x24007048","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$Y$</span></span></img></span></span> be compact hyper-Kähler manifolds deformation equivalent to the Hilbert scheme of length <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span> subschemes of a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$K3$</span></span></img></span></span> surface. A class in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$H^{p,p}(X\\times Y,{\\mathbb {Q}})$</span></span></img></span></span> is an <span>analytic correspondence</span>, if it belongs to the subring generated by Chern classes of coherent analytic sheaves. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$f:H^2(X,{\\mathbb {Q}})\\rightarrow H^2(Y,{\\mathbb {Q}})$</span></span></img></span></span> be a rational Hodge isometry with respect to the Beauville–Bogomolov–Fujiki pairings. We prove that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$f$</span></span></img></span></span> is induced by an analytic correspondence. We furthermore lift <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$f$</span></span></img></span></span> to an analytic correspondence <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\tilde {f}: H^*(X,{\\mathbb {Q}})[2n]\\rightarrow H^*(Y,{\\mathbb {Q}})[2n]$</span></span></img></span></span>, which is a Hodge isometry with respect to the Mukai pairings and which preserves the gradings up to sign. When <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$Y$</span></span></img></span></span> are projective, the correspondences <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$f$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$\\tilde {f}$</span></span></img></span></span> are algebraic.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational Hodge isometries of hyper-Kähler varieties of type are algebraic\",\"authors\":\"Eyal Markman\",\"doi\":\"10.1112/s0010437x24007048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$X$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$Y$</span></span></img></span></span> be compact hyper-Kähler manifolds deformation equivalent to the Hilbert scheme of length <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n$</span></span></img></span></span> subschemes of a <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K3$</span></span></img></span></span> surface. A class in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$H^{p,p}(X\\\\times Y,{\\\\mathbb {Q}})$</span></span></img></span></span> is an <span>analytic correspondence</span>, if it belongs to the subring generated by Chern classes of coherent analytic sheaves. Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f:H^2(X,{\\\\mathbb {Q}})\\\\rightarrow H^2(Y,{\\\\mathbb {Q}})$</span></span></img></span></span> be a rational Hodge isometry with respect to the Beauville–Bogomolov–Fujiki pairings. We prove that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f$</span></span></img></span></span> is induced by an analytic correspondence. We furthermore lift <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f$</span></span></img></span></span> to an analytic correspondence <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\tilde {f}: H^*(X,{\\\\mathbb {Q}})[2n]\\\\rightarrow H^*(Y,{\\\\mathbb {Q}})[2n]$</span></span></img></span></span>, which is a Hodge isometry with respect to the Mukai pairings and which preserves the gradings up to sign. When <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$X$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$Y$</span></span></img></span></span> are projective, the correspondences <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240506135739299-0180:S0010437X24007048:S0010437X24007048_inline13.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\tilde {f}$</span></span></img></span></span> are algebraic.</p>\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/s0010437x24007048\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x24007048","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设 $X$ 和 $Y$ 是紧凑超凯勒流形,其变形等价于 $K3$ 曲面的长度为 $n$ 的希尔伯特子方案。如果$H^{p,p}(X/times Y,{\mathbb {Q}})$中的一个类属于相干解析剪切的切恩类所产生的子环,那么这个类就是解析对应。让 $f:H^2(X,{\mathbb {Q}})\rightarrow H^2(Y,{\mathbb {Q}})$ 是关于博维尔-博戈莫洛夫-富士基配对的有理霍奇等距。我们证明 $f$ 是由解析对应关系诱导的。我们进一步把 $f$ 提升到一个解析对应 $\tilde {f}:H^*(X,{\mathbb{Q}})[2n]\rightarrow H^*(Y,{\mathbb{Q}})[2n]$,这是一个关于向井配对的霍奇等距法,它保留了直到符号的等级。当 $X$ 和 $Y$ 是投影的时候,对应的 $f$ 和 $\tilde {f}$ 是代数的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational Hodge isometries of hyper-Kähler varieties of type are algebraic

Let $X$ and $Y$ be compact hyper-Kähler manifolds deformation equivalent to the Hilbert scheme of length $n$ subschemes of a $K3$ surface. A class in $H^{p,p}(X\times Y,{\mathbb {Q}})$ is an analytic correspondence, if it belongs to the subring generated by Chern classes of coherent analytic sheaves. Let $f:H^2(X,{\mathbb {Q}})\rightarrow H^2(Y,{\mathbb {Q}})$ be a rational Hodge isometry with respect to the Beauville–Bogomolov–Fujiki pairings. We prove that $f$ is induced by an analytic correspondence. We furthermore lift $f$ to an analytic correspondence $\tilde {f}: H^*(X,{\mathbb {Q}})[2n]\rightarrow H^*(Y,{\mathbb {Q}})[2n]$, which is a Hodge isometry with respect to the Mukai pairings and which preserves the gradings up to sign. When $X$ and $Y$ are projective, the correspondences $f$ and $\tilde {f}$ are algebraic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信