Ge2SeS/GeSe 范德华异质结构的电子、光学和热电特性的第一性原理计算

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Hamza Rghioui , Mohamed Said Zyane , Adil Marjaoui , Mohamed Ait Tamerd , Mustapha Diani , Mohamed Zanouni
{"title":"Ge2SeS/GeSe 范德华异质结构的电子、光学和热电特性的第一性原理计算","authors":"Hamza Rghioui ,&nbsp;Mohamed Said Zyane ,&nbsp;Adil Marjaoui ,&nbsp;Mohamed Ait Tamerd ,&nbsp;Mustapha Diani ,&nbsp;Mohamed Zanouni","doi":"10.1016/j.physe.2024.115985","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, we systematically investigate the electronic structure, optical and thermoelectric properties of the Ge<sub>2</sub>SeS/GeSe van der Waals (vdW) heterostructure in comparison to the Ge<sub>2</sub>SeS and GeSe monolayers by using density functional theory (DFT) implemented in Quantum ESPRESSO. We have constructed two configurations of the Ge<sub>2</sub>SeS/GeSe heterostructure by stacking the Ge<sub>2</sub>SeS monolayer on top of the GeSe monolayer (Stacking A<sub>1</sub> and A<sub>2</sub>). According to our calculations, the calculated indirect electronic band gaps of both Stacking A<sub>1</sub> and Stacking A<sub>2</sub> are E<sub>g</sub> = 0.80 eV and 0.88 eV, respectively. The transfer of charges from the Ge<sub>2</sub>SeS to the GeSe monolayer for both configurations has been predicted. By Bader charge analysis, the charge transfers for Stacking A<sub>1</sub> and A<sub>2</sub> are approximately 0.013 e and 0.020 e, respectively. The coefficient of absorption for the Ge<sub>2</sub>SeS/GeSe heterostructure is higher than that for Ge<sub>2</sub>SeS and GeSe monolayers in both regions of the spectrum (visible, and UV). Moreover, the Ge<sub>2</sub>SeS/GeSe heterostructure has a very good absorbing capability of light in the visible region up to 85 × 10<sup>4</sup> cm<sup>−1</sup>. Our calculations yielded a high thermoelectrical electronic figure of merit (ZT<sub>e</sub>) of 12.64 and 2.27 for Stacking A<sub>1</sub> and A<sub>2</sub>, respectively. As a result, our findings show that the Ge<sub>2</sub>SeS/GeSe heterostructure is a promising material for thermoelectric and optoelectronic applications.</p></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles calculations of electronic, optical and thermoelectric properties of the Ge2SeS/GeSe van der Waals heterostructure\",\"authors\":\"Hamza Rghioui ,&nbsp;Mohamed Said Zyane ,&nbsp;Adil Marjaoui ,&nbsp;Mohamed Ait Tamerd ,&nbsp;Mustapha Diani ,&nbsp;Mohamed Zanouni\",\"doi\":\"10.1016/j.physe.2024.115985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research, we systematically investigate the electronic structure, optical and thermoelectric properties of the Ge<sub>2</sub>SeS/GeSe van der Waals (vdW) heterostructure in comparison to the Ge<sub>2</sub>SeS and GeSe monolayers by using density functional theory (DFT) implemented in Quantum ESPRESSO. We have constructed two configurations of the Ge<sub>2</sub>SeS/GeSe heterostructure by stacking the Ge<sub>2</sub>SeS monolayer on top of the GeSe monolayer (Stacking A<sub>1</sub> and A<sub>2</sub>). According to our calculations, the calculated indirect electronic band gaps of both Stacking A<sub>1</sub> and Stacking A<sub>2</sub> are E<sub>g</sub> = 0.80 eV and 0.88 eV, respectively. The transfer of charges from the Ge<sub>2</sub>SeS to the GeSe monolayer for both configurations has been predicted. By Bader charge analysis, the charge transfers for Stacking A<sub>1</sub> and A<sub>2</sub> are approximately 0.013 e and 0.020 e, respectively. The coefficient of absorption for the Ge<sub>2</sub>SeS/GeSe heterostructure is higher than that for Ge<sub>2</sub>SeS and GeSe monolayers in both regions of the spectrum (visible, and UV). Moreover, the Ge<sub>2</sub>SeS/GeSe heterostructure has a very good absorbing capability of light in the visible region up to 85 × 10<sup>4</sup> cm<sup>−1</sup>. Our calculations yielded a high thermoelectrical electronic figure of merit (ZT<sub>e</sub>) of 12.64 and 2.27 for Stacking A<sub>1</sub> and A<sub>2</sub>, respectively. As a result, our findings show that the Ge<sub>2</sub>SeS/GeSe heterostructure is a promising material for thermoelectric and optoelectronic applications.</p></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947724000894\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724000894","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们利用量子 ESPRESSO 实现的密度泛函理论(DFT),系统地研究了 Ge2SeS/GeSe 范德华(vdW)异质结构与 Ge2SeS 和 GeSe 单层结构的电子结构、光学和热电性能的比较。我们通过在 GeSe 单层上堆叠 Ge2SeS 单层(堆叠 A1 和 A2),构建了 Ge2SeS/GeSe 异质结构的两种构型。根据我们的计算,堆叠 A1 和堆叠 A2 的计算间接电子带隙分别为 Eg = 0.80 eV 和 0.88 eV。我们预测了这两种构型中电荷从 Ge2SeS 向 GeSe 单层的转移。通过 Bader 电荷分析,堆叠 A1 和 A2 的电荷转移分别约为 0.013 e 和 0.020 e。在光谱的两个区域(可见光和紫外线),Ge2SeS/GeSe 异质结构的吸收系数都高于 Ge2SeS 和 GeSe 单层。此外,Ge2SeS/GeSe 异质结构在可见光区域对高达 85 × 104 cm-1 的光具有很好的吸收能力。根据我们的计算,堆叠 A1 和 A2 的热电电子优度(ZTe)分别为 12.64 和 2.27。因此,我们的研究结果表明,Ge2SeS/GeSe 异质结构是一种具有热电和光电应用前景的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First-principles calculations of electronic, optical and thermoelectric properties of the Ge2SeS/GeSe van der Waals heterostructure

In this research, we systematically investigate the electronic structure, optical and thermoelectric properties of the Ge2SeS/GeSe van der Waals (vdW) heterostructure in comparison to the Ge2SeS and GeSe monolayers by using density functional theory (DFT) implemented in Quantum ESPRESSO. We have constructed two configurations of the Ge2SeS/GeSe heterostructure by stacking the Ge2SeS monolayer on top of the GeSe monolayer (Stacking A1 and A2). According to our calculations, the calculated indirect electronic band gaps of both Stacking A1 and Stacking A2 are Eg = 0.80 eV and 0.88 eV, respectively. The transfer of charges from the Ge2SeS to the GeSe monolayer for both configurations has been predicted. By Bader charge analysis, the charge transfers for Stacking A1 and A2 are approximately 0.013 e and 0.020 e, respectively. The coefficient of absorption for the Ge2SeS/GeSe heterostructure is higher than that for Ge2SeS and GeSe monolayers in both regions of the spectrum (visible, and UV). Moreover, the Ge2SeS/GeSe heterostructure has a very good absorbing capability of light in the visible region up to 85 × 104 cm−1. Our calculations yielded a high thermoelectrical electronic figure of merit (ZTe) of 12.64 and 2.27 for Stacking A1 and A2, respectively. As a result, our findings show that the Ge2SeS/GeSe heterostructure is a promising material for thermoelectric and optoelectronic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信