利用环上的循环码,从环的直接乘积推导出新的量子密码

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Pooja Soni, Manju Pruthi, Arun Kumar Yadav
{"title":"利用环上的循环码,从环的直接乘积推导出新的量子密码","authors":"Pooja Soni,&nbsp;Manju Pruthi,&nbsp;Arun Kumar Yadav","doi":"10.1016/S0034-4877(24)00027-2","DOIUrl":null,"url":null,"abstract":"<div><p>This research paper discusses the construction of novel and better quantum codes from the direct product of <em>t</em>-copies of ring <em>R</em> (discussed in Section 2), using cyclic codes over <em>R</em> by employing the CSS construction technique. Here, we present an overview of the structure and essential properties of a ring <em>R</em>. Furthermore, we analyze the distance-preserving nature of the Gray map in Subsection 2.1. Here, we also investigate maximum distance separable (MDS) codes by using the concept of quantum singleton defect (QSD), which indicates the overall quality of codes. To demonstrate the practicality of our findings, we provide illustrative examples implemented using the Magma software.</p></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"93 2","pages":"Pages 213-229"},"PeriodicalIF":1.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NEW QUANTUM CODES DERIVED FROM THE DIRECT PRODUCT OF RINGS, USING CYCLIC CODES OVER THE RING\",\"authors\":\"Pooja Soni,&nbsp;Manju Pruthi,&nbsp;Arun Kumar Yadav\",\"doi\":\"10.1016/S0034-4877(24)00027-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research paper discusses the construction of novel and better quantum codes from the direct product of <em>t</em>-copies of ring <em>R</em> (discussed in Section 2), using cyclic codes over <em>R</em> by employing the CSS construction technique. Here, we present an overview of the structure and essential properties of a ring <em>R</em>. Furthermore, we analyze the distance-preserving nature of the Gray map in Subsection 2.1. Here, we also investigate maximum distance separable (MDS) codes by using the concept of quantum singleton defect (QSD), which indicates the overall quality of codes. To demonstrate the practicality of our findings, we provide illustrative examples implemented using the Magma software.</p></div>\",\"PeriodicalId\":49630,\"journal\":{\"name\":\"Reports on Mathematical Physics\",\"volume\":\"93 2\",\"pages\":\"Pages 213-229\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034487724000272\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487724000272","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究论文讨论了通过使用 CSS 构建技术,利用环 R 上的循环码,从环 R 的 t 副本的直接乘积(在第 2 节中讨论)构建新颖且更好的量子编码。此外,我们在第 2.1 小节中分析了格雷映射的距离保留性质。在这里,我们还利用量子单子缺陷(QSD)的概念研究了最大距离可分离(MDS)编码,它表示编码的整体质量。为了证明我们研究结果的实用性,我们提供了使用 Magma 软件实现的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NEW QUANTUM CODES DERIVED FROM THE DIRECT PRODUCT OF RINGS, USING CYCLIC CODES OVER THE RING

This research paper discusses the construction of novel and better quantum codes from the direct product of t-copies of ring R (discussed in Section 2), using cyclic codes over R by employing the CSS construction technique. Here, we present an overview of the structure and essential properties of a ring R. Furthermore, we analyze the distance-preserving nature of the Gray map in Subsection 2.1. Here, we also investigate maximum distance separable (MDS) codes by using the concept of quantum singleton defect (QSD), which indicates the overall quality of codes. To demonstrate the practicality of our findings, we provide illustrative examples implemented using the Magma software.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reports on Mathematical Physics
Reports on Mathematical Physics 物理-物理:数学物理
CiteScore
1.80
自引率
0.00%
发文量
40
审稿时长
6 months
期刊介绍: Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信