量子动力学系统中的链传递性和阴影特性

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Mona Khare, Ravi Singh Chauhan
{"title":"量子动力学系统中的链传递性和阴影特性","authors":"Mona Khare,&nbsp;Ravi Singh Chauhan","doi":"10.1016/S0034-4877(24)00026-0","DOIUrl":null,"url":null,"abstract":"<div><p>In the present paper we investigate the notions of chain transitivity, ε-shadowing and expansiveness in the dynamics of quantum measure spaces (<em>P</em>, μ). Besides of several results proved for a chain transitive quantum dynamical system, it is shown that if a measure preserving morphism φ on (<em>P</em>, μ) is chain mixing, then φ<sup><em>n</em></sup> is chain transitive for each <em>n</em> ∊ ℕ. The present study also elucidates interrelationship between ε-shadowing and expansiveness of a quantum dynamical system (<em>P</em>, μ, φ) under suitable conditions. Examples are given to support the theory.</p></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"93 2","pages":"Pages 195-211"},"PeriodicalIF":1.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CHAIN TRANSITIVITY AND SHADOWING PROPERTY IN QUANTUM DYNAMICAL SYSTEMS\",\"authors\":\"Mona Khare,&nbsp;Ravi Singh Chauhan\",\"doi\":\"10.1016/S0034-4877(24)00026-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present paper we investigate the notions of chain transitivity, ε-shadowing and expansiveness in the dynamics of quantum measure spaces (<em>P</em>, μ). Besides of several results proved for a chain transitive quantum dynamical system, it is shown that if a measure preserving morphism φ on (<em>P</em>, μ) is chain mixing, then φ<sup><em>n</em></sup> is chain transitive for each <em>n</em> ∊ ℕ. The present study also elucidates interrelationship between ε-shadowing and expansiveness of a quantum dynamical system (<em>P</em>, μ, φ) under suitable conditions. Examples are given to support the theory.</p></div>\",\"PeriodicalId\":49630,\"journal\":{\"name\":\"Reports on Mathematical Physics\",\"volume\":\"93 2\",\"pages\":\"Pages 195-211\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034487724000260\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487724000260","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了量子度量空间(P,μ)动力学中的链传递性、ε阴影和广延性概念。除了证明了链传递性量子动力学系统的几个结果之外,还证明了如果(P, μ)上的度量保持态φ是链混合的,那么对于每个 n ∊ ℕ,φn 都是链传递性的。本研究还阐明了量子动力学系统(P, μ, φ)在适当条件下的ε阴影和扩张性之间的相互关系。举例说明了这一理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CHAIN TRANSITIVITY AND SHADOWING PROPERTY IN QUANTUM DYNAMICAL SYSTEMS

In the present paper we investigate the notions of chain transitivity, ε-shadowing and expansiveness in the dynamics of quantum measure spaces (P, μ). Besides of several results proved for a chain transitive quantum dynamical system, it is shown that if a measure preserving morphism φ on (P, μ) is chain mixing, then φn is chain transitive for each n ∊ ℕ. The present study also elucidates interrelationship between ε-shadowing and expansiveness of a quantum dynamical system (P, μ, φ) under suitable conditions. Examples are given to support the theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reports on Mathematical Physics
Reports on Mathematical Physics 物理-物理:数学物理
CiteScore
1.80
自引率
0.00%
发文量
40
审稿时长
6 months
期刊介绍: Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信