不同私人设施位置的改进下限

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Pasin Manurangsi
{"title":"不同私人设施位置的改进下限","authors":"Pasin Manurangsi","doi":"10.1016/j.ipl.2024.106502","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the differentially private (DP) facility location problem in the so called <em>super-set output</em> setting proposed by Gupta et al. <span>[13]</span>. The current best known expected approximation ratio for an <em>ϵ</em>-DP algorithm is <span><math><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow><mrow><msqrt><mrow><mi>ϵ</mi></mrow></msqrt></mrow></mfrac><mo>)</mo></mrow></math></span> due to Cohen-Addad et al. <span>[3]</span> where <em>n</em> denote the size of the metric space, meanwhile the best known lower bound is <span><math><mi>Ω</mi><mo>(</mo><mn>1</mn><mo>/</mo><msqrt><mrow><mi>ϵ</mi></mrow></msqrt><mo>)</mo></math></span> <span>[8]</span>.</p><p>In this short note, we give a lower bound of <span><math><mover><mrow><mi>Ω</mi></mrow><mrow><mo>˜</mo></mrow></mover><mrow><mo>(</mo><mi>min</mi><mo>⁡</mo><mrow><mo>{</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>,</mo><msqrt><mrow><mfrac><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow><mrow><mi>ϵ</mi></mrow></mfrac></mrow></msqrt><mo>}</mo></mrow><mo>)</mo></mrow></math></span> on the expected approximation ratio of any <em>ϵ</em>-DP algorithm, which is the first evidence that the approximation ratio has to grow with the size of the metric space.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"187 ","pages":"Article 106502"},"PeriodicalIF":0.7000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved lower bound for differentially private facility location\",\"authors\":\"Pasin Manurangsi\",\"doi\":\"10.1016/j.ipl.2024.106502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the differentially private (DP) facility location problem in the so called <em>super-set output</em> setting proposed by Gupta et al. <span>[13]</span>. The current best known expected approximation ratio for an <em>ϵ</em>-DP algorithm is <span><math><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow><mrow><msqrt><mrow><mi>ϵ</mi></mrow></msqrt></mrow></mfrac><mo>)</mo></mrow></math></span> due to Cohen-Addad et al. <span>[3]</span> where <em>n</em> denote the size of the metric space, meanwhile the best known lower bound is <span><math><mi>Ω</mi><mo>(</mo><mn>1</mn><mo>/</mo><msqrt><mrow><mi>ϵ</mi></mrow></msqrt><mo>)</mo></math></span> <span>[8]</span>.</p><p>In this short note, we give a lower bound of <span><math><mover><mrow><mi>Ω</mi></mrow><mrow><mo>˜</mo></mrow></mover><mrow><mo>(</mo><mi>min</mi><mo>⁡</mo><mrow><mo>{</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>,</mo><msqrt><mrow><mfrac><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow><mrow><mi>ϵ</mi></mrow></mfrac></mrow></msqrt><mo>}</mo></mrow><mo>)</mo></mrow></math></span> on the expected approximation ratio of any <em>ϵ</em>-DP algorithm, which is the first evidence that the approximation ratio has to grow with the size of the metric space.</p></div>\",\"PeriodicalId\":56290,\"journal\":{\"name\":\"Information Processing Letters\",\"volume\":\"187 \",\"pages\":\"Article 106502\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020019024000322\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019024000322","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是古普塔等人[13]提出的所谓超集输出环境下的差异化私有(DP)设施定位问题。Cohen-Addad 等人[3]提出的ϵ-DP 算法目前已知的最佳预期近似率是 O(lognϵ),其中 n 表示度量空间的大小,而已知的最佳下限是 Ω(1/ϵ) [8]。在这篇短文中,我们给出了任何ϵ-DP 算法的预期逼近率下限 Ω˜(min{logn,lognϵ}),这是逼近率必须随度量空间大小增长的第一个证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved lower bound for differentially private facility location

We consider the differentially private (DP) facility location problem in the so called super-set output setting proposed by Gupta et al. [13]. The current best known expected approximation ratio for an ϵ-DP algorithm is O(lognϵ) due to Cohen-Addad et al. [3] where n denote the size of the metric space, meanwhile the best known lower bound is Ω(1/ϵ) [8].

In this short note, we give a lower bound of Ω˜(min{logn,lognϵ}) on the expected approximation ratio of any ϵ-DP algorithm, which is the first evidence that the approximation ratio has to grow with the size of the metric space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing Letters
Information Processing Letters 工程技术-计算机:信息系统
CiteScore
1.80
自引率
0.00%
发文量
70
审稿时长
7.3 months
期刊介绍: Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered. Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信