基于温度谱分析的挑战者深渊近底湍流混合探索

IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY
Yuan-Zheng Lu , Shuang-Xi Guo , Sheng-Qi Zhou , Peng-Qi Huang , Jian Lin , Xian-Rong Cen , Ling Qu
{"title":"基于温度谱分析的挑战者深渊近底湍流混合探索","authors":"Yuan-Zheng Lu ,&nbsp;Shuang-Xi Guo ,&nbsp;Sheng-Qi Zhou ,&nbsp;Peng-Qi Huang ,&nbsp;Jian Lin ,&nbsp;Xian-Rong Cen ,&nbsp;Ling Qu","doi":"10.1016/j.dsr.2024.104312","DOIUrl":null,"url":null,"abstract":"<div><p>The hadal Mariana Trench remains poorly understood. In December 2016, an array of high-resolution temperature loggers, attached to the ocean bottom seismometers (OBSs), was deployed from 1665 to 7520 m for two weeks across the Challenger Deep of the Southern Mariana Trench. The temperature variance spectrum reveals that the bottom water is mildly turbulent and it is mainly modulated by the semidiurnal internal tides. At the second deepest observation station (depth of 7015 m), the viscous subrange is resolved in the high-frequency spectrum. Applying the proposed method with Taylor’s frozen field hypothesis and Kraichnan theoretical spectrum analysis, it is revealed that turbulent dissipation rate <span><math><mi>ɛ</mi></math></span> is <span><math><mrow><mn>7</mn><mo>.</mo><mn>8</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>10</mn></mrow></msup></mrow></math></span> <span><math><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><msup><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> and flow speed U is 8.9 mm/s. Dissipation rates <span><math><mi>ɛ</mi></math></span> of all stations vary between <span><math><mrow><mn>5</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>11</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mn>1</mn><mo>.</mo><mn>4</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>9</mn></mrow></msup></mrow></math></span> <span><math><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><msup><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>, with the northern region of Challenger Deep experiencing stronger energy dissipation than the southern one. The vertical distribution of dissipation rate <span><math><mi>ɛ</mi></math></span> shows that it decreases with increasing depth from 1000 to 6000 m, but then increases to around 8000 m, which is consistent with previous observations and numerical simulations. The available turbulent mixing data indicates that the energy dissipation is vertically distributed in a distinct multilayer structure in the deep ocean of Challenger Deep, which is proposed to link to the intrusion of water mass in the deep Mariana trench.</p></div>","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":"208 ","pages":"Article 104312"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring near-bottom turbulent mixing across the Challenger Deep based on temperature spectral analysis\",\"authors\":\"Yuan-Zheng Lu ,&nbsp;Shuang-Xi Guo ,&nbsp;Sheng-Qi Zhou ,&nbsp;Peng-Qi Huang ,&nbsp;Jian Lin ,&nbsp;Xian-Rong Cen ,&nbsp;Ling Qu\",\"doi\":\"10.1016/j.dsr.2024.104312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The hadal Mariana Trench remains poorly understood. In December 2016, an array of high-resolution temperature loggers, attached to the ocean bottom seismometers (OBSs), was deployed from 1665 to 7520 m for two weeks across the Challenger Deep of the Southern Mariana Trench. The temperature variance spectrum reveals that the bottom water is mildly turbulent and it is mainly modulated by the semidiurnal internal tides. At the second deepest observation station (depth of 7015 m), the viscous subrange is resolved in the high-frequency spectrum. Applying the proposed method with Taylor’s frozen field hypothesis and Kraichnan theoretical spectrum analysis, it is revealed that turbulent dissipation rate <span><math><mi>ɛ</mi></math></span> is <span><math><mrow><mn>7</mn><mo>.</mo><mn>8</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>10</mn></mrow></msup></mrow></math></span> <span><math><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><msup><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> and flow speed U is 8.9 mm/s. Dissipation rates <span><math><mi>ɛ</mi></math></span> of all stations vary between <span><math><mrow><mn>5</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>11</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mn>1</mn><mo>.</mo><mn>4</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>9</mn></mrow></msup></mrow></math></span> <span><math><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><msup><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>, with the northern region of Challenger Deep experiencing stronger energy dissipation than the southern one. The vertical distribution of dissipation rate <span><math><mi>ɛ</mi></math></span> shows that it decreases with increasing depth from 1000 to 6000 m, but then increases to around 8000 m, which is consistent with previous observations and numerical simulations. The available turbulent mixing data indicates that the energy dissipation is vertically distributed in a distinct multilayer structure in the deep ocean of Challenger Deep, which is proposed to link to the intrusion of water mass in the deep Mariana trench.</p></div>\",\"PeriodicalId\":51009,\"journal\":{\"name\":\"Deep-Sea Research Part I-Oceanographic Research Papers\",\"volume\":\"208 \",\"pages\":\"Article 104312\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Deep-Sea Research Part I-Oceanographic Research Papers\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967063724000827\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-Sea Research Part I-Oceanographic Research Papers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967063724000827","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

人们对马里亚纳海沟的了解仍然很少。2016 年 12 月,在南马里亚纳海沟挑战者深渊 1665 米至 7520 米处部署了高分辨率温度记录仪阵列,该阵列与海底地震仪(OBS)相连,持续两周。温度变异谱显示,底层海水呈轻度湍流状态,主要受半日内潮的影响。在第二个最深观测站(深度为 7015 米),高频频谱解析了粘性子范围。通过泰勒冻结场假说和 Kraichnan 理论频谱分析,发现湍流耗散率 ɛ 为 7.8×10-10 m2/s3,流速 U 为 8.9 mm/s。所有站点的耗散率ɛ介于 5.9×10-11 和 1.4×10-9 m2/s3 之间,挑战者深渊北部地区的能量耗散强于南部地区。耗散率ɛ的垂直分布表明,从 1000 米到 6000 米,它随着深度的增加而减小,但随后又增加到 8000 米左右,这与以前的观测和数值模拟结果一致。现有的湍流混合数据表明,在挑战者深渊的深海中,能量耗散垂直分布在一个明显的多层结构中,这与马里亚纳深海沟的水团入侵有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring near-bottom turbulent mixing across the Challenger Deep based on temperature spectral analysis

The hadal Mariana Trench remains poorly understood. In December 2016, an array of high-resolution temperature loggers, attached to the ocean bottom seismometers (OBSs), was deployed from 1665 to 7520 m for two weeks across the Challenger Deep of the Southern Mariana Trench. The temperature variance spectrum reveals that the bottom water is mildly turbulent and it is mainly modulated by the semidiurnal internal tides. At the second deepest observation station (depth of 7015 m), the viscous subrange is resolved in the high-frequency spectrum. Applying the proposed method with Taylor’s frozen field hypothesis and Kraichnan theoretical spectrum analysis, it is revealed that turbulent dissipation rate ɛ is 7.8×1010 m2/s3 and flow speed U is 8.9 mm/s. Dissipation rates ɛ of all stations vary between 5.9×1011 and 1.4×109 m2/s3, with the northern region of Challenger Deep experiencing stronger energy dissipation than the southern one. The vertical distribution of dissipation rate ɛ shows that it decreases with increasing depth from 1000 to 6000 m, but then increases to around 8000 m, which is consistent with previous observations and numerical simulations. The available turbulent mixing data indicates that the energy dissipation is vertically distributed in a distinct multilayer structure in the deep ocean of Challenger Deep, which is proposed to link to the intrusion of water mass in the deep Mariana trench.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
4.20%
发文量
144
审稿时长
18.3 weeks
期刊介绍: Deep-Sea Research Part I: Oceanographic Research Papers is devoted to the publication of the results of original scientific research, including theoretical work of evident oceanographic applicability; and the solution of instrumental or methodological problems with evidence of successful use. The journal is distinguished by its interdisciplinary nature and its breadth, covering the geological, physical, chemical and biological aspects of the ocean and its boundaries with the sea floor and the atmosphere. In addition to regular "Research Papers" and "Instruments and Methods" papers, briefer communications may be published as "Notes". Supplemental matter, such as extensive data tables or graphs and multimedia content, may be published as electronic appendices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信