使用统计方法进行句子分类的原型

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Nishy Reshmi S. , Shreelekshmi R.
{"title":"使用统计方法进行句子分类的原型","authors":"Nishy Reshmi S. ,&nbsp;Shreelekshmi R.","doi":"10.1016/j.simpa.2024.100651","DOIUrl":null,"url":null,"abstract":"<div><p>Classification of sentences is a challenging problem in the field of natural language processing. We present a prototype for classifying the pairs of sentences using their syntactic and semantic relations. The sentences are classified into three classes — entailment, contradiction and neutral. The grammatical relations of the sentences are extracted and these relations are represented as word embeddings using global vector, Glove. The word to word semantics is found using Wordnet semantic relations. The prototype is based on statistical measures which was implemented using Python 3.6.9 version.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100651"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000393/pdfft?md5=9e56277ae65af16a4cd919b7b7d20d0d&pid=1-s2.0-S2665963824000393-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A prototype for sentence classification using statistical methods\",\"authors\":\"Nishy Reshmi S. ,&nbsp;Shreelekshmi R.\",\"doi\":\"10.1016/j.simpa.2024.100651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Classification of sentences is a challenging problem in the field of natural language processing. We present a prototype for classifying the pairs of sentences using their syntactic and semantic relations. The sentences are classified into three classes — entailment, contradiction and neutral. The grammatical relations of the sentences are extracted and these relations are represented as word embeddings using global vector, Glove. The word to word semantics is found using Wordnet semantic relations. The prototype is based on statistical measures which was implemented using Python 3.6.9 version.</p></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"20 \",\"pages\":\"Article 100651\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000393/pdfft?md5=9e56277ae65af16a4cd919b7b7d20d0d&pid=1-s2.0-S2665963824000393-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

句子分类是自然语言处理领域的一个难题。我们提出了一种利用句法和语义关系对句子进行分类的原型。句子被分为三类--蕴涵句、矛盾句和中性句。我们提取了句子的语法关系,并使用全局向量 Glove 将这些关系表示为词嵌入。单词与单词之间的语义则是通过 Wordnet 语义关系发现的。原型基于统计量,使用 Python 3.6.9 版本实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A prototype for sentence classification using statistical methods

Classification of sentences is a challenging problem in the field of natural language processing. We present a prototype for classifying the pairs of sentences using their syntactic and semantic relations. The sentences are classified into three classes — entailment, contradiction and neutral. The grammatical relations of the sentences are extracted and these relations are represented as word embeddings using global vector, Glove. The word to word semantics is found using Wordnet semantic relations. The prototype is based on statistical measures which was implemented using Python 3.6.9 version.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信