利用不确定数据包络分析进行分类

IF 2.6 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Casey Garner , Allen Holder
{"title":"利用不确定数据包络分析进行分类","authors":"Casey Garner ,&nbsp;Allen Holder","doi":"10.1016/j.ejco.2024.100090","DOIUrl":null,"url":null,"abstract":"<div><p>Classifications organize entities into categories that identify similarities within a category and discern dissimilarities among categories, and they powerfully classify information in support of analysis. We propose a new classification scheme premised on the reality of imperfect data. Our computational model uses uncertain data envelopment analysis to define a classification's proximity to equitable efficiency, which is an aggregate measure of intra-similarity within a classification's categories. Our classification process has two overriding computational challenges, those being a loss of convexity and a combinatorially explosive search space. We overcome the first challenge by establishing lower and upper bounds on the proximity value, and then by searching this range with a first-order algorithm. We address the second challenge by adapting the p-median problem to initiate our exploration, and by then employing an iterative neighborhood search to finalize a classification. We conclude by classifying the thirty stocks in the Dow Jones Industrial average into performant tiers, by classifying prostate treatments into clinically effectual categories, and dividing airlines into peer groups.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"12 ","pages":"Article 100090"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440624000078/pdfft?md5=e5d692d70868e82bb22e6f67f85185e3&pid=1-s2.0-S2192440624000078-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Classifying with uncertain data envelopment analysis\",\"authors\":\"Casey Garner ,&nbsp;Allen Holder\",\"doi\":\"10.1016/j.ejco.2024.100090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Classifications organize entities into categories that identify similarities within a category and discern dissimilarities among categories, and they powerfully classify information in support of analysis. We propose a new classification scheme premised on the reality of imperfect data. Our computational model uses uncertain data envelopment analysis to define a classification's proximity to equitable efficiency, which is an aggregate measure of intra-similarity within a classification's categories. Our classification process has two overriding computational challenges, those being a loss of convexity and a combinatorially explosive search space. We overcome the first challenge by establishing lower and upper bounds on the proximity value, and then by searching this range with a first-order algorithm. We address the second challenge by adapting the p-median problem to initiate our exploration, and by then employing an iterative neighborhood search to finalize a classification. We conclude by classifying the thirty stocks in the Dow Jones Industrial average into performant tiers, by classifying prostate treatments into clinically effectual categories, and dividing airlines into peer groups.</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"12 \",\"pages\":\"Article 100090\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2192440624000078/pdfft?md5=e5d692d70868e82bb22e6f67f85185e3&pid=1-s2.0-S2192440624000078-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192440624000078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440624000078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

分类将实体组织成不同的类别,从而识别类别内的相似性和类别间的不相似性,并对信息进行有力的分类以支持分析。我们提出了一种基于不完美数据现实的新分类方案。我们的计算模型使用不确定数据包络分析法来定义分类与公平效率的接近程度,公平效率是对分类类别内部相似性的综合衡量。我们的分类过程在计算上面临两大挑战,一是凸性损失,二是搜索空间的组合爆炸性。我们通过确定近似值的下限和上限,然后用一阶算法搜索这个范围来克服第一个挑战。我们通过调整 p-median 问题来启动探索,然后采用迭代邻域搜索来最终确定分类,从而解决了第二个难题。最后,我们将道琼斯工业平均指数中的 30 只股票划分为表现优异的等级,将前列腺治疗方法划分为临床有效的类别,并将航空公司划分为同行组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifying with uncertain data envelopment analysis

Classifications organize entities into categories that identify similarities within a category and discern dissimilarities among categories, and they powerfully classify information in support of analysis. We propose a new classification scheme premised on the reality of imperfect data. Our computational model uses uncertain data envelopment analysis to define a classification's proximity to equitable efficiency, which is an aggregate measure of intra-similarity within a classification's categories. Our classification process has two overriding computational challenges, those being a loss of convexity and a combinatorially explosive search space. We overcome the first challenge by establishing lower and upper bounds on the proximity value, and then by searching this range with a first-order algorithm. We address the second challenge by adapting the p-median problem to initiate our exploration, and by then employing an iterative neighborhood search to finalize a classification. We conclude by classifying the thirty stocks in the Dow Jones Industrial average into performant tiers, by classifying prostate treatments into clinically effectual categories, and dividing airlines into peer groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EURO Journal on Computational Optimization
EURO Journal on Computational Optimization OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
3.50
自引率
0.00%
发文量
28
审稿时长
60 days
期刊介绍: The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信