寻找最小有界链的参数化复杂性

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Nello Blaser , Morten Brun , Lars M. Salbu , Erlend Raa Vågset
{"title":"寻找最小有界链的参数化复杂性","authors":"Nello Blaser ,&nbsp;Morten Brun ,&nbsp;Lars M. Salbu ,&nbsp;Erlend Raa Vågset","doi":"10.1016/j.comgeo.2024.102102","DOIUrl":null,"url":null,"abstract":"<div><p>Finding the smallest <em>d</em>-chain with a specific <span><math><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-boundary in a simplicial complex is known as the <span>Minimum Bounded Chain</span> problem (MBC<sub><em>d</em></sub>). MBC<sub><em>d</em></sub> is NP-hard for all <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. In this paper, we prove that it is also W[1]-hard for all <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, if we parameterize the problem by solution size. We also give an algorithm solving MBC<sub>1</sub> in polynomial time and introduce and implement two fixed parameter tractable (FPT) algorithms solving MBC<sub><em>d</em></sub> for all <em>d</em>. The first algorithm uses a shortest path approach and is parameterized by solution size and coface degree. The second algorithm is a dynamic programming approach based on treewidth, which has the same runtime as a lower bound we prove under the exponential time hypothesis.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925772124000245/pdfft?md5=783e1fbffafc12d2132a61d1e8077846&pid=1-s2.0-S0925772124000245-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The parameterized complexity of finding minimum bounded chains\",\"authors\":\"Nello Blaser ,&nbsp;Morten Brun ,&nbsp;Lars M. Salbu ,&nbsp;Erlend Raa Vågset\",\"doi\":\"10.1016/j.comgeo.2024.102102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Finding the smallest <em>d</em>-chain with a specific <span><math><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-boundary in a simplicial complex is known as the <span>Minimum Bounded Chain</span> problem (MBC<sub><em>d</em></sub>). MBC<sub><em>d</em></sub> is NP-hard for all <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. In this paper, we prove that it is also W[1]-hard for all <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, if we parameterize the problem by solution size. We also give an algorithm solving MBC<sub>1</sub> in polynomial time and introduce and implement two fixed parameter tractable (FPT) algorithms solving MBC<sub><em>d</em></sub> for all <em>d</em>. The first algorithm uses a shortest path approach and is parameterized by solution size and coface degree. The second algorithm is a dynamic programming approach based on treewidth, which has the same runtime as a lower bound we prove under the exponential time hypothesis.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0925772124000245/pdfft?md5=783e1fbffafc12d2132a61d1e8077846&pid=1-s2.0-S0925772124000245-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772124000245\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772124000245","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

寻找简单复合物中具有特定(d-1)边界的最小 d 链被称为最小有界链问题(MBCd)。对于所有 d≥2 的情况,MBCd 都是 NP-困难的。在本文中,我们证明,如果以解的大小为参数,对于所有 d≥2 的问题,MBCd 也是 W[1]-hard 的。我们还给出了一种多项式时间内求解 MBC1 的算法,并引入和实现了两种固定参数可求解 MBCd 的算法(FPT)。第二种算法是基于树宽的动态编程方法,其运行时间与我们在指数时间假设下证明的下限相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The parameterized complexity of finding minimum bounded chains

Finding the smallest d-chain with a specific (d1)-boundary in a simplicial complex is known as the Minimum Bounded Chain problem (MBCd). MBCd is NP-hard for all d2. In this paper, we prove that it is also W[1]-hard for all d2, if we parameterize the problem by solution size. We also give an algorithm solving MBC1 in polynomial time and introduce and implement two fixed parameter tractable (FPT) algorithms solving MBCd for all d. The first algorithm uses a shortest path approach and is parameterized by solution size and coface degree. The second algorithm is a dynamic programming approach based on treewidth, which has the same runtime as a lower bound we prove under the exponential time hypothesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信