Nello Blaser , Morten Brun , Lars M. Salbu , Erlend Raa Vågset
{"title":"寻找最小有界链的参数化复杂性","authors":"Nello Blaser , Morten Brun , Lars M. Salbu , Erlend Raa Vågset","doi":"10.1016/j.comgeo.2024.102102","DOIUrl":null,"url":null,"abstract":"<div><p>Finding the smallest <em>d</em>-chain with a specific <span><math><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-boundary in a simplicial complex is known as the <span>Minimum Bounded Chain</span> problem (MBC<sub><em>d</em></sub>). MBC<sub><em>d</em></sub> is NP-hard for all <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. In this paper, we prove that it is also W[1]-hard for all <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, if we parameterize the problem by solution size. We also give an algorithm solving MBC<sub>1</sub> in polynomial time and introduce and implement two fixed parameter tractable (FPT) algorithms solving MBC<sub><em>d</em></sub> for all <em>d</em>. The first algorithm uses a shortest path approach and is parameterized by solution size and coface degree. The second algorithm is a dynamic programming approach based on treewidth, which has the same runtime as a lower bound we prove under the exponential time hypothesis.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925772124000245/pdfft?md5=783e1fbffafc12d2132a61d1e8077846&pid=1-s2.0-S0925772124000245-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The parameterized complexity of finding minimum bounded chains\",\"authors\":\"Nello Blaser , Morten Brun , Lars M. Salbu , Erlend Raa Vågset\",\"doi\":\"10.1016/j.comgeo.2024.102102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Finding the smallest <em>d</em>-chain with a specific <span><math><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-boundary in a simplicial complex is known as the <span>Minimum Bounded Chain</span> problem (MBC<sub><em>d</em></sub>). MBC<sub><em>d</em></sub> is NP-hard for all <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. In this paper, we prove that it is also W[1]-hard for all <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, if we parameterize the problem by solution size. We also give an algorithm solving MBC<sub>1</sub> in polynomial time and introduce and implement two fixed parameter tractable (FPT) algorithms solving MBC<sub><em>d</em></sub> for all <em>d</em>. The first algorithm uses a shortest path approach and is parameterized by solution size and coface degree. The second algorithm is a dynamic programming approach based on treewidth, which has the same runtime as a lower bound we prove under the exponential time hypothesis.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0925772124000245/pdfft?md5=783e1fbffafc12d2132a61d1e8077846&pid=1-s2.0-S0925772124000245-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772124000245\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772124000245","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
The parameterized complexity of finding minimum bounded chains
Finding the smallest d-chain with a specific -boundary in a simplicial complex is known as the Minimum Bounded Chain problem (MBCd). MBCd is NP-hard for all . In this paper, we prove that it is also W[1]-hard for all , if we parameterize the problem by solution size. We also give an algorithm solving MBC1 in polynomial time and introduce and implement two fixed parameter tractable (FPT) algorithms solving MBCd for all d. The first algorithm uses a shortest path approach and is parameterized by solution size and coface degree. The second algorithm is a dynamic programming approach based on treewidth, which has the same runtime as a lower bound we prove under the exponential time hypothesis.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.