子立方体分割的复杂性与支持的加法结构有关

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Norbert Hegyvári
{"title":"子立方体分割的复杂性与支持的加法结构有关","authors":"Norbert Hegyvári","doi":"10.1016/j.ic.2024.105170","DOIUrl":null,"url":null,"abstract":"<div><p>The subcube partition of a Boolean function is a partition of <span><math><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> into the union of subcubes <span><math><msub><mrow><mo>∪</mo></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, such that the value of the function <em>f</em> is the same on each vector of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, i.e. for every <em>i</em> and <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>y</mi><mo>)</mo></math></span>. The complexity of it denotes by <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>S</mi><mi>C</mi><mi>P</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> is the minimum number of subcubes in a subcube partition which computes the Boolean function <em>f</em>. We give a lower bound of the complexity of subcube partitions of Boolean function which relates the additive behaviour of the support and the influence of the function.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"299 ","pages":"Article 105170"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The complexity of subcube partition relates to the additive structure of the support\",\"authors\":\"Norbert Hegyvári\",\"doi\":\"10.1016/j.ic.2024.105170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The subcube partition of a Boolean function is a partition of <span><math><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> into the union of subcubes <span><math><msub><mrow><mo>∪</mo></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, such that the value of the function <em>f</em> is the same on each vector of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, i.e. for every <em>i</em> and <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>y</mi><mo>)</mo></math></span>. The complexity of it denotes by <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>S</mi><mi>C</mi><mi>P</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> is the minimum number of subcubes in a subcube partition which computes the Boolean function <em>f</em>. We give a lower bound of the complexity of subcube partitions of Boolean function which relates the additive behaviour of the support and the influence of the function.</p></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"299 \",\"pages\":\"Article 105170\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089054012400035X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089054012400035X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

布尔函数的子立方体分区是将{0,1}n划分为子立方体∪iCi的分区,使得函数f在Ci的每个向量上的值都相同,即对于每个i和x,y∈Ci,f(x)=f(y)。用 HSCP(f) 表示的复杂度是计算布尔函数 f 的子立方体分区中最小的子立方体个数。我们给出了布尔函数子立方体分区复杂度的下限,它与支持的加法行为和函数的影响有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The complexity of subcube partition relates to the additive structure of the support

The subcube partition of a Boolean function is a partition of {0,1}n into the union of subcubes iCi, such that the value of the function f is the same on each vector of Ci, i.e. for every i and x,yCi, f(x)=f(y). The complexity of it denotes by HSCP(f) is the minimum number of subcubes in a subcube partition which computes the Boolean function f. We give a lower bound of the complexity of subcube partitions of Boolean function which relates the additive behaviour of the support and the influence of the function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信