{"title":"子立方体分割的复杂性与支持的加法结构有关","authors":"Norbert Hegyvári","doi":"10.1016/j.ic.2024.105170","DOIUrl":null,"url":null,"abstract":"<div><p>The subcube partition of a Boolean function is a partition of <span><math><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> into the union of subcubes <span><math><msub><mrow><mo>∪</mo></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, such that the value of the function <em>f</em> is the same on each vector of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, i.e. for every <em>i</em> and <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>y</mi><mo>)</mo></math></span>. The complexity of it denotes by <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>S</mi><mi>C</mi><mi>P</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> is the minimum number of subcubes in a subcube partition which computes the Boolean function <em>f</em>. We give a lower bound of the complexity of subcube partitions of Boolean function which relates the additive behaviour of the support and the influence of the function.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"299 ","pages":"Article 105170"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The complexity of subcube partition relates to the additive structure of the support\",\"authors\":\"Norbert Hegyvári\",\"doi\":\"10.1016/j.ic.2024.105170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The subcube partition of a Boolean function is a partition of <span><math><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> into the union of subcubes <span><math><msub><mrow><mo>∪</mo></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, such that the value of the function <em>f</em> is the same on each vector of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, i.e. for every <em>i</em> and <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>y</mi><mo>)</mo></math></span>. The complexity of it denotes by <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>S</mi><mi>C</mi><mi>P</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> is the minimum number of subcubes in a subcube partition which computes the Boolean function <em>f</em>. We give a lower bound of the complexity of subcube partitions of Boolean function which relates the additive behaviour of the support and the influence of the function.</p></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"299 \",\"pages\":\"Article 105170\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089054012400035X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089054012400035X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
布尔函数的子立方体分区是将{0,1}n划分为子立方体∪iCi的分区,使得函数f在Ci的每个向量上的值都相同,即对于每个i和x,y∈Ci,f(x)=f(y)。用 HSCP(f) 表示的复杂度是计算布尔函数 f 的子立方体分区中最小的子立方体个数。我们给出了布尔函数子立方体分区复杂度的下限,它与支持的加法行为和函数的影响有关。
The complexity of subcube partition relates to the additive structure of the support
The subcube partition of a Boolean function is a partition of into the union of subcubes , such that the value of the function f is the same on each vector of , i.e. for every i and , . The complexity of it denotes by is the minimum number of subcubes in a subcube partition which computes the Boolean function f. We give a lower bound of the complexity of subcube partitions of Boolean function which relates the additive behaviour of the support and the influence of the function.
期刊介绍:
Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as
-Biological computation and computational biology-
Computational complexity-
Computer theorem-proving-
Concurrency and distributed process theory-
Cryptographic theory-
Data base theory-
Decision problems in logic-
Design and analysis of algorithms-
Discrete optimization and mathematical programming-
Inductive inference and learning theory-
Logic & constraint programming-
Program verification & model checking-
Probabilistic & Quantum computation-
Semantics of programming languages-
Symbolic computation, lambda calculus, and rewriting systems-
Types and typechecking