通过深度学习从射线轨迹预测 SOFAR 信道中的水下声波传输损耗。

IF 1.2 Q3 ACOUSTICS
Haitao Wang, Shiwei Peng, Qunyi He, Xiangyang Zeng
{"title":"通过深度学习从射线轨迹预测 SOFAR 信道中的水下声波传输损耗。","authors":"Haitao Wang, Shiwei Peng, Qunyi He, Xiangyang Zeng","doi":"10.1121/10.0025976","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting acoustic transmission loss in the SOFAR channel faces challenges, such as excessively complex algorithms and computationally intensive calculations in classical methods. To address these challenges, a deep learning-based underwater acoustic transmission loss prediction method is proposed. By properly training a U-net-type convolutional neural network, the method can provide an accurate mapping between ray trajectories and the transmission loss over the problem domain. Verifications are performed in a SOFAR channel with Munk's sound speed profile. The results suggest that the method has potential to be used as a fast predicting model without sacrificing accuracy.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"4 5","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting underwater acoustic transmission loss in the SOFAR channel from ray trajectories via deep learning.\",\"authors\":\"Haitao Wang, Shiwei Peng, Qunyi He, Xiangyang Zeng\",\"doi\":\"10.1121/10.0025976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predicting acoustic transmission loss in the SOFAR channel faces challenges, such as excessively complex algorithms and computationally intensive calculations in classical methods. To address these challenges, a deep learning-based underwater acoustic transmission loss prediction method is proposed. By properly training a U-net-type convolutional neural network, the method can provide an accurate mapping between ray trajectories and the transmission loss over the problem domain. Verifications are performed in a SOFAR channel with Munk's sound speed profile. The results suggest that the method has potential to be used as a fast predicting model without sacrificing accuracy.</p>\",\"PeriodicalId\":73538,\"journal\":{\"name\":\"JASA express letters\",\"volume\":\"4 5\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JASA express letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0025976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0025976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

预测 SOFAR 信道中的声波传输损耗面临着各种挑战,例如传统方法中过于复杂的算法和计算密集型计算。为了应对这些挑战,本文提出了一种基于深度学习的水下声波传输损耗预测方法。通过适当训练 U 网型卷积神经网络,该方法可提供射线轨迹与问题域传输损耗之间的精确映射。在具有 Munk 声速剖面的 SOFAR 信道中进行了验证。结果表明,该方法具有作为快速预测模型的潜力,同时不会牺牲精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting underwater acoustic transmission loss in the SOFAR channel from ray trajectories via deep learning.

Predicting acoustic transmission loss in the SOFAR channel faces challenges, such as excessively complex algorithms and computationally intensive calculations in classical methods. To address these challenges, a deep learning-based underwater acoustic transmission loss prediction method is proposed. By properly training a U-net-type convolutional neural network, the method can provide an accurate mapping between ray trajectories and the transmission loss over the problem domain. Verifications are performed in a SOFAR channel with Munk's sound speed profile. The results suggest that the method has potential to be used as a fast predicting model without sacrificing accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信