从纬度梯度植物功能特征的种内变异推断当地对气候的适应性。

IF 2.6 3区 环境科学与生态学 Q2 BIODIVERSITY CONSERVATION
Conservation Physiology Pub Date : 2024-05-05 eCollection Date: 2024-01-01 DOI:10.1093/conphys/coae018
Emily P Tudor, Wolfgang Lewandrowski, Siegfried Krauss, Erik J Veneklaas
{"title":"从纬度梯度植物功能特征的种内变异推断当地对气候的适应性。","authors":"Emily P Tudor, Wolfgang Lewandrowski, Siegfried Krauss, Erik J Veneklaas","doi":"10.1093/conphys/coae018","DOIUrl":null,"url":null,"abstract":"<p><p>Ascertaining the traits important for acclimation and adaptation is a critical first step to predicting the fate of populations and species facing rapid environmental change. One of the primary challenges in trait-based ecology is understanding the patterns and processes underpinning functional trait variation in plants. Studying intraspecific variation of functional traits across latitudinal gradients offers an excellent <i>in situ</i> approach to assess associations with environmental factors, which naturally covary along these spatial scales such as the local climate and soil profiles. Therefore, we examined how climatic and edaphic conditions varied across a ~160-km latitudinal gradient to understand how these conditions were associated with the physiological performance and morphological expression within five spatially distinct populations spanning the latitudinal distribution of a model species (<i>Stylidium hispidum</i> Lindl.). Northern populations had patterns of trait means reflecting water conservation strategies that included reduced gas exchange, rosette size and floral investment compared to the southern populations. Redundancy analysis, together with variance partitioning, showed that climate factors accounted for a significantly greater portion of the weighted variance in plant trait data (22.1%; adjusted <i>R</i><sup>2</sup> = 0.192) than edaphic factors (9.3%; adjusted <i>R</i><sup>2</sup> = 0.08). Disentangling such independent and interactive abiotic drivers of functional trait variation will deliver key insights into the mechanisms underpinning local adaptation and population-level responses to current and future climates.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"12 1","pages":"coae018"},"PeriodicalIF":2.6000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074481/pdf/","citationCount":"0","resultStr":"{\"title\":\"Local adaptation to climate inferred from intraspecific variation in plant functional traits along a latitudinal gradient.\",\"authors\":\"Emily P Tudor, Wolfgang Lewandrowski, Siegfried Krauss, Erik J Veneklaas\",\"doi\":\"10.1093/conphys/coae018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ascertaining the traits important for acclimation and adaptation is a critical first step to predicting the fate of populations and species facing rapid environmental change. One of the primary challenges in trait-based ecology is understanding the patterns and processes underpinning functional trait variation in plants. Studying intraspecific variation of functional traits across latitudinal gradients offers an excellent <i>in situ</i> approach to assess associations with environmental factors, which naturally covary along these spatial scales such as the local climate and soil profiles. Therefore, we examined how climatic and edaphic conditions varied across a ~160-km latitudinal gradient to understand how these conditions were associated with the physiological performance and morphological expression within five spatially distinct populations spanning the latitudinal distribution of a model species (<i>Stylidium hispidum</i> Lindl.). Northern populations had patterns of trait means reflecting water conservation strategies that included reduced gas exchange, rosette size and floral investment compared to the southern populations. Redundancy analysis, together with variance partitioning, showed that climate factors accounted for a significantly greater portion of the weighted variance in plant trait data (22.1%; adjusted <i>R</i><sup>2</sup> = 0.192) than edaphic factors (9.3%; adjusted <i>R</i><sup>2</sup> = 0.08). Disentangling such independent and interactive abiotic drivers of functional trait variation will deliver key insights into the mechanisms underpinning local adaptation and population-level responses to current and future climates.</p>\",\"PeriodicalId\":54331,\"journal\":{\"name\":\"Conservation Physiology\",\"volume\":\"12 1\",\"pages\":\"coae018\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074481/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conservation Physiology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/conphys/coae018\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Physiology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/conphys/coae018","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

要预测面临快速环境变化的种群和物种的命运,确定对适应和调适非常重要的性状是关键的第一步。基于性状的生态学面临的主要挑战之一是了解植物功能性状变异的模式和过程。研究跨纬度梯度的功能性状种内变异为评估与环境因素的关系提供了一种极佳的原位方法,而环境因素在这些空间尺度上是自然共变的,如当地气候和土壤剖面。因此,我们研究了约 160 千米纬度梯度上气候和土壤条件的变化情况,以了解这些条件如何与一个模式物种(Stylidium hispidum Lindl.)纬度分布上五个不同空间种群的生理表现和形态表达相关联。与南方种群相比,北方种群的性状均值模式反映了节水策略,包括减少气体交换、莲座大小和花投资。冗余分析和方差分配显示,在植物性状数据的加权方差中,气候因子所占的比例(22.1%;调整后 R2 = 0.192)明显高于土壤因子(9.3%;调整后 R2 = 0.08)。厘清功能性状变异的这些独立和互动的非生物驱动因素,将有助于深入了解地方适应和种群对当前和未来气候的响应机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local adaptation to climate inferred from intraspecific variation in plant functional traits along a latitudinal gradient.

Ascertaining the traits important for acclimation and adaptation is a critical first step to predicting the fate of populations and species facing rapid environmental change. One of the primary challenges in trait-based ecology is understanding the patterns and processes underpinning functional trait variation in plants. Studying intraspecific variation of functional traits across latitudinal gradients offers an excellent in situ approach to assess associations with environmental factors, which naturally covary along these spatial scales such as the local climate and soil profiles. Therefore, we examined how climatic and edaphic conditions varied across a ~160-km latitudinal gradient to understand how these conditions were associated with the physiological performance and morphological expression within five spatially distinct populations spanning the latitudinal distribution of a model species (Stylidium hispidum Lindl.). Northern populations had patterns of trait means reflecting water conservation strategies that included reduced gas exchange, rosette size and floral investment compared to the southern populations. Redundancy analysis, together with variance partitioning, showed that climate factors accounted for a significantly greater portion of the weighted variance in plant trait data (22.1%; adjusted R2 = 0.192) than edaphic factors (9.3%; adjusted R2 = 0.08). Disentangling such independent and interactive abiotic drivers of functional trait variation will deliver key insights into the mechanisms underpinning local adaptation and population-level responses to current and future climates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Conservation Physiology
Conservation Physiology Environmental Science-Management, Monitoring, Policy and Law
CiteScore
5.10
自引率
3.70%
发文量
71
审稿时长
11 weeks
期刊介绍: Conservation Physiology is an online only, fully open access journal published on behalf of the Society for Experimental Biology. Biodiversity across the globe faces a growing number of threats associated with human activities. Conservation Physiology will publish research on all taxa (microbes, plants and animals) focused on understanding and predicting how organisms, populations, ecosystems and natural resources respond to environmental change and stressors. Physiology is considered in the broadest possible terms to include functional and mechanistic responses at all scales. We also welcome research towards developing and refining strategies to rebuild populations, restore ecosystems, inform conservation policy, and manage living resources. We define conservation physiology broadly and encourage potential authors to contact the editorial team if they have any questions regarding the remit of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信