Aaron J DeSalvio, Alper Adak, Seth C Murray, Diego Jarquín, Noah D Winans, Daniel Crozier, William L Rooney
{"title":"近红外反射光谱表观预测与跨环境玉米农艺性状基因组预测具有相似的性能。","authors":"Aaron J DeSalvio, Alper Adak, Seth C Murray, Diego Jarquín, Noah D Winans, Daniel Crozier, William L Rooney","doi":"10.1002/tpg2.20454","DOIUrl":null,"url":null,"abstract":"<p><p>For nearly two decades, genomic prediction and selection have supported efforts to increase genetic gains in plant and animal improvement programs. However, novel phenomic strategies for predicting complex traits in maize have recently proven beneficial when integrated into across-environment sparse genomic prediction models. One phenomic data modality is whole grain near-infrared spectroscopy (NIRS), which records reflectance values of biological samples (e.g., maize kernels) based on chemical composition. Predictions of hybrid maize grain yield (GY) and 500-kernel weight (KW) across 2 years (2011-2012) and two management conditions (water-stressed and well-watered) were conducted using combinations of reflectance data obtained from high-throughput, F<sub>2</sub> whole-kernel scans and genomic data obtained from genotyping-by-sequencing within four different cross-validation (CV) schemes (CV2, CV1, CV0, and CV00). When predicting the performance of untested genotypes in characterized (CV1) environments, genomic data were better than phenomic data for GY (0.689 ± 0.024-genomic vs. 0.612 ± 0.045-phenomic), but phenomic data were better than genomic data for KW (0.535 ± 0.034-genomic vs. 0.617 ± 0.145-phenomic). Multi-kernel models (combinations of phenomic and genomic relationship matrices) did not surpass single-kernel models for GY prediction in CV1 or CV00 (prediction of untested genotypes in uncharacterized environments); however, these models did outperform the single-kernel models for prediction of KW in these same CVs. Lasso regression applied to the NIRS data set selected a subset of 216 NIRS bands that achieved comparable prediction abilities to the full phenomic data set of 3112 bands predicting GY and KW under CV1 and CV00.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-infrared reflectance spectroscopy phenomic prediction can perform similarly to genomic prediction of maize agronomic traits across environments.\",\"authors\":\"Aaron J DeSalvio, Alper Adak, Seth C Murray, Diego Jarquín, Noah D Winans, Daniel Crozier, William L Rooney\",\"doi\":\"10.1002/tpg2.20454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For nearly two decades, genomic prediction and selection have supported efforts to increase genetic gains in plant and animal improvement programs. However, novel phenomic strategies for predicting complex traits in maize have recently proven beneficial when integrated into across-environment sparse genomic prediction models. One phenomic data modality is whole grain near-infrared spectroscopy (NIRS), which records reflectance values of biological samples (e.g., maize kernels) based on chemical composition. Predictions of hybrid maize grain yield (GY) and 500-kernel weight (KW) across 2 years (2011-2012) and two management conditions (water-stressed and well-watered) were conducted using combinations of reflectance data obtained from high-throughput, F<sub>2</sub> whole-kernel scans and genomic data obtained from genotyping-by-sequencing within four different cross-validation (CV) schemes (CV2, CV1, CV0, and CV00). When predicting the performance of untested genotypes in characterized (CV1) environments, genomic data were better than phenomic data for GY (0.689 ± 0.024-genomic vs. 0.612 ± 0.045-phenomic), but phenomic data were better than genomic data for KW (0.535 ± 0.034-genomic vs. 0.617 ± 0.145-phenomic). Multi-kernel models (combinations of phenomic and genomic relationship matrices) did not surpass single-kernel models for GY prediction in CV1 or CV00 (prediction of untested genotypes in uncharacterized environments); however, these models did outperform the single-kernel models for prediction of KW in these same CVs. Lasso regression applied to the NIRS data set selected a subset of 216 NIRS bands that achieved comparable prediction abilities to the full phenomic data set of 3112 bands predicting GY and KW under CV1 and CV00.</p>\",\"PeriodicalId\":49002,\"journal\":{\"name\":\"Plant Genome\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/tpg2.20454\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.20454","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Near-infrared reflectance spectroscopy phenomic prediction can perform similarly to genomic prediction of maize agronomic traits across environments.
For nearly two decades, genomic prediction and selection have supported efforts to increase genetic gains in plant and animal improvement programs. However, novel phenomic strategies for predicting complex traits in maize have recently proven beneficial when integrated into across-environment sparse genomic prediction models. One phenomic data modality is whole grain near-infrared spectroscopy (NIRS), which records reflectance values of biological samples (e.g., maize kernels) based on chemical composition. Predictions of hybrid maize grain yield (GY) and 500-kernel weight (KW) across 2 years (2011-2012) and two management conditions (water-stressed and well-watered) were conducted using combinations of reflectance data obtained from high-throughput, F2 whole-kernel scans and genomic data obtained from genotyping-by-sequencing within four different cross-validation (CV) schemes (CV2, CV1, CV0, and CV00). When predicting the performance of untested genotypes in characterized (CV1) environments, genomic data were better than phenomic data for GY (0.689 ± 0.024-genomic vs. 0.612 ± 0.045-phenomic), but phenomic data were better than genomic data for KW (0.535 ± 0.034-genomic vs. 0.617 ± 0.145-phenomic). Multi-kernel models (combinations of phenomic and genomic relationship matrices) did not surpass single-kernel models for GY prediction in CV1 or CV00 (prediction of untested genotypes in uncharacterized environments); however, these models did outperform the single-kernel models for prediction of KW in these same CVs. Lasso regression applied to the NIRS data set selected a subset of 216 NIRS bands that achieved comparable prediction abilities to the full phenomic data set of 3112 bands predicting GY and KW under CV1 and CV00.
期刊介绍:
The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.