{"title":"计算和实验蛋白质配体亲和力测定技术的最新进展。","authors":"Visvaldas Kairys, Lina Baranauskiene, Migle Kazlauskiene, Asta Zubrienė, Vytautas Petrauskas, Daumantas Matulis, Egidijus Kazlauskas","doi":"10.1080/17460441.2024.2349169","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Modern drug discovery revolves around designing ligands that target the chosen biomolecule, typically proteins. For this, the evaluation of affinities of putative ligands is crucial. This has given rise to a multitude of dedicated computational and experimental methods that are constantly being developed and improved.</p><p><strong>Areas covered: </strong>In this review, the authors reassess both the industry mainstays and the newest trends among the methods for protein - small-molecule affinity determination. They discuss both computational affinity predictions and experimental techniques, describing their basic principles, main limitations, and advantages. Together, this serves as initial guide to the currently most popular and cutting-edge ligand-binding assays employed in rational drug design.</p><p><strong>Expert opinion: </strong>The affinity determination methods continue to develop toward miniaturization, high-throughput, and in-cell application. Moreover, the availability of data analysis tools has been constantly increasing. Nevertheless, cross-verification of data using at least two different techniques and careful result interpretation remain of utmost importance.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"649-670"},"PeriodicalIF":6.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in computational and experimental protein-ligand affinity determination techniques.\",\"authors\":\"Visvaldas Kairys, Lina Baranauskiene, Migle Kazlauskiene, Asta Zubrienė, Vytautas Petrauskas, Daumantas Matulis, Egidijus Kazlauskas\",\"doi\":\"10.1080/17460441.2024.2349169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Modern drug discovery revolves around designing ligands that target the chosen biomolecule, typically proteins. For this, the evaluation of affinities of putative ligands is crucial. This has given rise to a multitude of dedicated computational and experimental methods that are constantly being developed and improved.</p><p><strong>Areas covered: </strong>In this review, the authors reassess both the industry mainstays and the newest trends among the methods for protein - small-molecule affinity determination. They discuss both computational affinity predictions and experimental techniques, describing their basic principles, main limitations, and advantages. Together, this serves as initial guide to the currently most popular and cutting-edge ligand-binding assays employed in rational drug design.</p><p><strong>Expert opinion: </strong>The affinity determination methods continue to develop toward miniaturization, high-throughput, and in-cell application. Moreover, the availability of data analysis tools has been constantly increasing. Nevertheless, cross-verification of data using at least two different techniques and careful result interpretation remain of utmost importance.</p>\",\"PeriodicalId\":12267,\"journal\":{\"name\":\"Expert Opinion on Drug Discovery\",\"volume\":\" \",\"pages\":\"649-670\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Opinion on Drug Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17460441.2024.2349169\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17460441.2024.2349169","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Recent advances in computational and experimental protein-ligand affinity determination techniques.
Introduction: Modern drug discovery revolves around designing ligands that target the chosen biomolecule, typically proteins. For this, the evaluation of affinities of putative ligands is crucial. This has given rise to a multitude of dedicated computational and experimental methods that are constantly being developed and improved.
Areas covered: In this review, the authors reassess both the industry mainstays and the newest trends among the methods for protein - small-molecule affinity determination. They discuss both computational affinity predictions and experimental techniques, describing their basic principles, main limitations, and advantages. Together, this serves as initial guide to the currently most popular and cutting-edge ligand-binding assays employed in rational drug design.
Expert opinion: The affinity determination methods continue to develop toward miniaturization, high-throughput, and in-cell application. Moreover, the availability of data analysis tools has been constantly increasing. Nevertheless, cross-verification of data using at least two different techniques and careful result interpretation remain of utmost importance.
期刊介绍:
Expert Opinion on Drug Discovery (ISSN 1746-0441 [print], 1746-045X [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on novel technologies involved in the drug discovery process, leading to new leads and reduced attrition rates. Each article is structured to incorporate the author’s own expert opinion on the scope for future development.
The Editors welcome:
Reviews covering chemoinformatics; bioinformatics; assay development; novel screening technologies; in vitro/in vivo models; structure-based drug design; systems biology
Drug Case Histories examining the steps involved in the preclinical and clinical development of a particular drug
The audience consists of scientists and managers in the healthcare and pharmaceutical industry, academic pharmaceutical scientists and other closely related professionals looking to enhance the success of their drug candidates through optimisation at the preclinical level.