作为对映体选择性检测赖氨酸平台的光学活性铜簇。

IF 2.8 4区 化学 Q2 CHEMISTRY, ANALYTICAL
Chirality Pub Date : 2024-05-08 DOI:10.1002/chir.23670
Camelia Dutta, Ragul Vivaz Nataraajan, Jatish Kumar
{"title":"作为对映体选择性检测赖氨酸平台的光学活性铜簇。","authors":"Camelia Dutta,&nbsp;Ragul Vivaz Nataraajan,&nbsp;Jatish Kumar","doi":"10.1002/chir.23670","DOIUrl":null,"url":null,"abstract":"<p>Metal clusters have drawn considerable research attention over the years due to their fascinating optical properties. Owing to their appealing photophysical characteristics, these materials have drawn attention as potential candidates for various application in diverse fields, including disease detection, biosensing, chemical sensing, and the fabrication of light-harvesting materials. Presently, there is an increasing research focus on the use of clusters in biomedical research, both as biodetection platform and as bioimaging agents. Of special interest are chiral clusters, which can selectively interact with chiral biomolecules owing to their optical activity. Herein, we showcase the use of a pair of chiroptically active copper clusters for the enantioselective detection of lysine, an amino acid of vast biological relevance. Two techniques are concurrently employed for the detection of lysine at varying concentrations. Circular dichroism serves as a potent tool for detecting lysine at low concentrations, whereas luminescence is effectively employed as a detection method for high analyte concentrations. The combined electronic impact of clusters and lysine resulted in the emergence of an enhanced enantioselective Cotton effect at specific wavelength.</p>","PeriodicalId":10170,"journal":{"name":"Chirality","volume":"36 5","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chiroptically active copper clusters as platform for enantioselective detection of lysine\",\"authors\":\"Camelia Dutta,&nbsp;Ragul Vivaz Nataraajan,&nbsp;Jatish Kumar\",\"doi\":\"10.1002/chir.23670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metal clusters have drawn considerable research attention over the years due to their fascinating optical properties. Owing to their appealing photophysical characteristics, these materials have drawn attention as potential candidates for various application in diverse fields, including disease detection, biosensing, chemical sensing, and the fabrication of light-harvesting materials. Presently, there is an increasing research focus on the use of clusters in biomedical research, both as biodetection platform and as bioimaging agents. Of special interest are chiral clusters, which can selectively interact with chiral biomolecules owing to their optical activity. Herein, we showcase the use of a pair of chiroptically active copper clusters for the enantioselective detection of lysine, an amino acid of vast biological relevance. Two techniques are concurrently employed for the detection of lysine at varying concentrations. Circular dichroism serves as a potent tool for detecting lysine at low concentrations, whereas luminescence is effectively employed as a detection method for high analyte concentrations. The combined electronic impact of clusters and lysine resulted in the emergence of an enhanced enantioselective Cotton effect at specific wavelength.</p>\",\"PeriodicalId\":10170,\"journal\":{\"name\":\"Chirality\",\"volume\":\"36 5\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chirality\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/chir.23670\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chirality","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/chir.23670","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

多年来,金属团簇因其迷人的光学特性吸引了大量研究人员的关注。由于这些材料具有吸引人的光物理特性,它们已成为疾病检测、生物传感、化学传感和光收集材料制造等不同领域各种应用的潜在候选材料而备受关注。目前,越来越多的研究聚焦于在生物医学研究中使用团簇,既作为生物检测平台,也作为生物成像剂。其中,手性团簇尤其引人关注,因为手性团簇具有光学活性,可以选择性地与手性生物分子相互作用。在这里,我们展示了利用一对具有手性活性的铜簇对赖氨酸进行对映选择性检测的方法,赖氨酸是一种具有重要生物学意义的氨基酸。我们同时采用了两种技术来检测不同浓度的赖氨酸。圆二色性是检测低浓度赖氨酸的有效工具,而发光则是检测高浓度分析物的有效方法。在特定波长下,簇和赖氨酸的联合电子影响产生了增强的对映体选择性科顿效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chiroptically active copper clusters as platform for enantioselective detection of lysine

Chiroptically active copper clusters as platform for enantioselective detection of lysine

Metal clusters have drawn considerable research attention over the years due to their fascinating optical properties. Owing to their appealing photophysical characteristics, these materials have drawn attention as potential candidates for various application in diverse fields, including disease detection, biosensing, chemical sensing, and the fabrication of light-harvesting materials. Presently, there is an increasing research focus on the use of clusters in biomedical research, both as biodetection platform and as bioimaging agents. Of special interest are chiral clusters, which can selectively interact with chiral biomolecules owing to their optical activity. Herein, we showcase the use of a pair of chiroptically active copper clusters for the enantioselective detection of lysine, an amino acid of vast biological relevance. Two techniques are concurrently employed for the detection of lysine at varying concentrations. Circular dichroism serves as a potent tool for detecting lysine at low concentrations, whereas luminescence is effectively employed as a detection method for high analyte concentrations. The combined electronic impact of clusters and lysine resulted in the emergence of an enhanced enantioselective Cotton effect at specific wavelength.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chirality
Chirality 医学-分析化学
CiteScore
4.40
自引率
5.00%
发文量
124
审稿时长
1 months
期刊介绍: The main aim of the journal is to publish original contributions of scientific work on the role of chirality in chemistry and biochemistry in respect to biological, chemical, materials, pharmacological, spectroscopic and physical properties. Papers on the chemistry (physiochemical, preparative synthetic, and analytical), physics, pharmacology, clinical pharmacology, toxicology, and other biological aspects of chiral molecules will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信