DNA 氧化损伤会促进与细胞外基质调节蛋白变化相关的血管老化。

IF 13.3 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Kirsty Foote, Marieke Rienks, Lukas Schmidt, Konstantinos Theofilatos, Yasmin, Matiss Ozols, Alexander Eckersley, Aarti Shah, Nichola Figg, Alison Finigan, Kevin O'Shaughnessy, Ian Wilkinson, Manuel Mayr, Martin Bennett
{"title":"DNA 氧化损伤会促进与细胞外基质调节蛋白变化相关的血管老化。","authors":"Kirsty Foote, Marieke Rienks, Lukas Schmidt, Konstantinos Theofilatos, Yasmin, Matiss Ozols, Alexander Eckersley, Aarti Shah, Nichola Figg, Alison Finigan, Kevin O'Shaughnessy, Ian Wilkinson, Manuel Mayr, Martin Bennett","doi":"10.1093/cvr/cvae091","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Vascular ageing is characterized by vessel stiffening, with increased deposition of extracellular matrix (ECM) proteins including collagens. Oxidative DNA damage occurs in vascular ageing, but how it regulates ECM proteins and vascular stiffening is unknown. We sought to determine the relationship between oxidative DNA damage and ECM regulatory proteins in vascular ageing.</p><p><strong>Methods and results: </strong>We examined oxidative DNA damage, the major base excision repair (BER) enzyme 8-Oxoguanine DNA Glycosylase (Ogg1) and its regulators, multiple physiological markers of ageing, and ECM proteomics in mice from 22 to 72 w. Vascular ageing was associated with increased oxidative DNA damage, and decreased expression of Ogg1, its active acetylated form, its acetylation regulatory proteins P300 and CBP, and the transcription factor Foxo3a. Vascular stiffness was examined in vivo in control, Ogg1-/-, or mice with vascular smooth muscle cell-specific expression of Ogg1+ (Ogg1) or an inactive mutation (Ogg1KR). Ogg1-/- and Ogg1KR mice showed reduced arterial compliance and distensibility, and increased stiffness and pulse pressure, whereas Ogg1 expression normalized all parameters to 72 w. ECM proteomics identified major changes in collagens with ageing, and downregulation of the ECM regulatory proteins Protein 6-lysyl oxidase (LOX) and WNT1-inducible-signaling pathway protein 2 (WISP2). Ogg1 overexpression upregulated LOX and WISP2 both in vitro and in vivo, and downregulated Transforming growth factor β1 (TGFb1) and Collagen 4α1 in vivo compared with Ogg1KR. Foxo3a activation induced Lox, while Wnt3 induction of Wisp2 also upregulated LOX and Foxo3a, and downregulated TGFβ1 and fibronectin 1. In humans, 8-oxo-G increased with vascular stiffness, while active OGG1 reduced with both age and stiffness.</p><p><strong>Conclusion: </strong>Vascular ageing is associated with oxidative DNA damage, downregulation of major BER proteins, and changes in multiple ECM structural and regulatory proteins. Ogg1 protects against vascular ageing, associated with changes in ECM regulatory proteins including LOX and WISP2.</p>","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":"614-628"},"PeriodicalIF":13.3000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12054627/pdf/","citationCount":"0","resultStr":"{\"title\":\"Oxidative DNA damage promotes vascular ageing associated with changes in extracellular matrix-regulating proteins.\",\"authors\":\"Kirsty Foote, Marieke Rienks, Lukas Schmidt, Konstantinos Theofilatos, Yasmin, Matiss Ozols, Alexander Eckersley, Aarti Shah, Nichola Figg, Alison Finigan, Kevin O'Shaughnessy, Ian Wilkinson, Manuel Mayr, Martin Bennett\",\"doi\":\"10.1093/cvr/cvae091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Vascular ageing is characterized by vessel stiffening, with increased deposition of extracellular matrix (ECM) proteins including collagens. Oxidative DNA damage occurs in vascular ageing, but how it regulates ECM proteins and vascular stiffening is unknown. We sought to determine the relationship between oxidative DNA damage and ECM regulatory proteins in vascular ageing.</p><p><strong>Methods and results: </strong>We examined oxidative DNA damage, the major base excision repair (BER) enzyme 8-Oxoguanine DNA Glycosylase (Ogg1) and its regulators, multiple physiological markers of ageing, and ECM proteomics in mice from 22 to 72 w. Vascular ageing was associated with increased oxidative DNA damage, and decreased expression of Ogg1, its active acetylated form, its acetylation regulatory proteins P300 and CBP, and the transcription factor Foxo3a. Vascular stiffness was examined in vivo in control, Ogg1-/-, or mice with vascular smooth muscle cell-specific expression of Ogg1+ (Ogg1) or an inactive mutation (Ogg1KR). Ogg1-/- and Ogg1KR mice showed reduced arterial compliance and distensibility, and increased stiffness and pulse pressure, whereas Ogg1 expression normalized all parameters to 72 w. ECM proteomics identified major changes in collagens with ageing, and downregulation of the ECM regulatory proteins Protein 6-lysyl oxidase (LOX) and WNT1-inducible-signaling pathway protein 2 (WISP2). Ogg1 overexpression upregulated LOX and WISP2 both in vitro and in vivo, and downregulated Transforming growth factor β1 (TGFb1) and Collagen 4α1 in vivo compared with Ogg1KR. Foxo3a activation induced Lox, while Wnt3 induction of Wisp2 also upregulated LOX and Foxo3a, and downregulated TGFβ1 and fibronectin 1. In humans, 8-oxo-G increased with vascular stiffness, while active OGG1 reduced with both age and stiffness.</p><p><strong>Conclusion: </strong>Vascular ageing is associated with oxidative DNA damage, downregulation of major BER proteins, and changes in multiple ECM structural and regulatory proteins. Ogg1 protects against vascular ageing, associated with changes in ECM regulatory proteins including LOX and WISP2.</p>\",\"PeriodicalId\":9638,\"journal\":{\"name\":\"Cardiovascular Research\",\"volume\":\" \",\"pages\":\"614-628\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12054627/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/cvr/cvae091\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cvr/cvae091","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:血管老化的特点是血管硬化,细胞外基质(ECM)蛋白(包括胶原蛋白)沉积增加。氧化 DNA 损伤发生在血管老化过程中,但它如何调节 ECM 蛋白和血管硬化尚不清楚。我们试图确定血管老化过程中氧化 DNA 损伤与 ECM 调节蛋白之间的关系:我们研究了氧化 DNA 损伤、主要碱基切除修复(BER)酶 8-Oxoguanine DNA 糖基化酶(Ogg1)及其调节因子、多种衰老生理标志物以及 22-72w 小鼠的 ECM 蛋白组学。血管老化与氧化 DNA 损伤增加、Ogg1 及其活性乙酰化形式、乙酰化调节蛋白 P300 和 CBP 以及转录因子 Foxo3a 的表达减少有关。在对照组、Ogg1-/-或血管平滑肌细胞特异性表达 Ogg1+ (Ogg1)或无活性突变(Ogg1KR)的小鼠体内对血管僵硬度进行了检测。Ogg1-/- 和 Ogg1KR 小鼠的动脉顺应性和扩张性降低,僵硬度和脉压升高,而 Ogg1 表达则使所有参数恢复到 72w 的正常水平。ECM 蛋白组学发现胶原蛋白随着衰老发生了重大变化,ECM 调控蛋白 6-赖氨酰氧化酶(LOX)和 WNT1 诱导信号通路蛋白 2(WISP2)下调。与 Ogg1KR 相比,Ogg1 的过表达在体外和体内都能上调 LOX 和 WISP2,在体内则能下调转化生长因子 β1(TGFb1)和胶原 4α1。在人体中,8-oxo-G 会随着血管僵化程度的增加而增加,而活性 OggG1 则会随着年龄和血管僵化程度的增加而减少:结论:血管老化与氧化 DNA 损伤、主要 BER 蛋白的下调以及多种 ECM 结构蛋白和调节蛋白的变化有关。Ogg1 可防止血管老化,这与 ECM 调控蛋白(包括 LOX 和 WISP2)的变化有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oxidative DNA damage promotes vascular ageing associated with changes in extracellular matrix-regulating proteins.

Aims: Vascular ageing is characterized by vessel stiffening, with increased deposition of extracellular matrix (ECM) proteins including collagens. Oxidative DNA damage occurs in vascular ageing, but how it regulates ECM proteins and vascular stiffening is unknown. We sought to determine the relationship between oxidative DNA damage and ECM regulatory proteins in vascular ageing.

Methods and results: We examined oxidative DNA damage, the major base excision repair (BER) enzyme 8-Oxoguanine DNA Glycosylase (Ogg1) and its regulators, multiple physiological markers of ageing, and ECM proteomics in mice from 22 to 72 w. Vascular ageing was associated with increased oxidative DNA damage, and decreased expression of Ogg1, its active acetylated form, its acetylation regulatory proteins P300 and CBP, and the transcription factor Foxo3a. Vascular stiffness was examined in vivo in control, Ogg1-/-, or mice with vascular smooth muscle cell-specific expression of Ogg1+ (Ogg1) or an inactive mutation (Ogg1KR). Ogg1-/- and Ogg1KR mice showed reduced arterial compliance and distensibility, and increased stiffness and pulse pressure, whereas Ogg1 expression normalized all parameters to 72 w. ECM proteomics identified major changes in collagens with ageing, and downregulation of the ECM regulatory proteins Protein 6-lysyl oxidase (LOX) and WNT1-inducible-signaling pathway protein 2 (WISP2). Ogg1 overexpression upregulated LOX and WISP2 both in vitro and in vivo, and downregulated Transforming growth factor β1 (TGFb1) and Collagen 4α1 in vivo compared with Ogg1KR. Foxo3a activation induced Lox, while Wnt3 induction of Wisp2 also upregulated LOX and Foxo3a, and downregulated TGFβ1 and fibronectin 1. In humans, 8-oxo-G increased with vascular stiffness, while active OGG1 reduced with both age and stiffness.

Conclusion: Vascular ageing is associated with oxidative DNA damage, downregulation of major BER proteins, and changes in multiple ECM structural and regulatory proteins. Ogg1 protects against vascular ageing, associated with changes in ECM regulatory proteins including LOX and WISP2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cardiovascular Research
Cardiovascular Research 医学-心血管系统
CiteScore
21.50
自引率
3.70%
发文量
547
审稿时长
1 months
期刊介绍: Cardiovascular Research Journal Overview: International journal of the European Society of Cardiology Focuses on basic and translational research in cardiology and cardiovascular biology Aims to enhance insight into cardiovascular disease mechanisms and innovation prospects Submission Criteria: Welcomes papers covering molecular, sub-cellular, cellular, organ, and organism levels Accepts clinical proof-of-concept and translational studies Manuscripts expected to provide significant contribution to cardiovascular biology and diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信