将机器学习技术应用于实施科学。

Nathalie Huguet, Jinying Chen, Ravi B Parikh, Miguel Marino, Susan A Flocke, Sonja Likumahuwa-Ackman, Justin Bekelman, Jennifer E DeVoe
{"title":"将机器学习技术应用于实施科学。","authors":"Nathalie Huguet, Jinying Chen, Ravi B Parikh, Miguel Marino, Susan A Flocke, Sonja Likumahuwa-Ackman, Justin Bekelman, Jennifer E DeVoe","doi":"10.2196/50201","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning (ML) approaches could expand the usefulness and application of implementation science methods in clinical medicine and public health settings. The aim of this viewpoint is to introduce a roadmap for applying ML techniques to address implementation science questions, such as predicting what will work best, for whom, under what circumstances, and with what predicted level of support, and what and when adaptation or deimplementation are needed. We describe how ML approaches could be used and discuss challenges that implementation scientists and methodologists will need to consider when using ML throughout the stages of implementation.</p>","PeriodicalId":74345,"journal":{"name":"Online journal of public health informatics","volume":"16 ","pages":"e50201"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074902/pdf/","citationCount":"0","resultStr":"{\"title\":\"Applying Machine Learning Techniques to Implementation Science.\",\"authors\":\"Nathalie Huguet, Jinying Chen, Ravi B Parikh, Miguel Marino, Susan A Flocke, Sonja Likumahuwa-Ackman, Justin Bekelman, Jennifer E DeVoe\",\"doi\":\"10.2196/50201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Machine learning (ML) approaches could expand the usefulness and application of implementation science methods in clinical medicine and public health settings. The aim of this viewpoint is to introduce a roadmap for applying ML techniques to address implementation science questions, such as predicting what will work best, for whom, under what circumstances, and with what predicted level of support, and what and when adaptation or deimplementation are needed. We describe how ML approaches could be used and discuss challenges that implementation scientists and methodologists will need to consider when using ML throughout the stages of implementation.</p>\",\"PeriodicalId\":74345,\"journal\":{\"name\":\"Online journal of public health informatics\",\"volume\":\"16 \",\"pages\":\"e50201\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074902/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Online journal of public health informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/50201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online journal of public health informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/50201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)方法可以扩大实施科学方法在临床医学和公共卫生环境中的作用和应用。本观点旨在介绍应用 ML 技术解决实施科学问题的路线图,例如预测什么方法最有效、对谁有效、在什么情况下有效、预测的支持水平如何、何时需要调整或取消实施。我们介绍了如何使用 ML 方法,并讨论了实施科学家和方法论专家在整个实施阶段使用 ML 时需要考虑的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying Machine Learning Techniques to Implementation Science.

Machine learning (ML) approaches could expand the usefulness and application of implementation science methods in clinical medicine and public health settings. The aim of this viewpoint is to introduce a roadmap for applying ML techniques to address implementation science questions, such as predicting what will work best, for whom, under what circumstances, and with what predicted level of support, and what and when adaptation or deimplementation are needed. We describe how ML approaches could be used and discuss challenges that implementation scientists and methodologists will need to consider when using ML throughout the stages of implementation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信