基于深度学习生物标记预测的肺结核胸部 X 光图像检索系统。

Bradley C Lowekamp, Andrei Gabrielian, Darrell E Hurt, Alex Rosenthal, Ziv Yaniv
{"title":"基于深度学习生物标记预测的肺结核胸部 X 光图像检索系统。","authors":"Bradley C Lowekamp, Andrei Gabrielian, Darrell E Hurt, Alex Rosenthal, Ziv Yaniv","doi":"10.1117/12.3006848","DOIUrl":null,"url":null,"abstract":"<p><p>The world health organization's global tuberculosis (TB) report for 2022 identifies TB, with an estimated 1.6 million, as a leading cause of death. The number of new cases has risen since 2020, particularly the number of new drug-resistant cases, estimated at 450,000 in 2021. This is concerning, as treatment of patients with drug resistant TB is complex and may not always be successful. The NIAID TB Portals program is an international consortium with a primary focus on patient centric data collection and analysis for drug resistant TB. The data includes images, their associated radiological findings, clinical records, and socioeconomic information. This work describes a TB Portals' Chest X-ray based image retrieval system which enables precision medicine. An input image is used to retrieve similar images and the associated patient specific information, thus facilitating inspection of outcomes and treatment regimens from comparable patients. Image similarity is defined using clinically relevant biomarkers: gender, age, body mass index (BMI), and the percentage of lung affected per sextant. The biomarkers are predicted using variations of the DenseNet169 convolutional neural network. A multi-task approach is used to predict gender, age and BMI incorporating transfer learning from an initial training on the NIH Clinical Center CXR dataset to the TB portals dataset. The resulting gender AUC, age and BMI mean absolute errors were 0.9854, 4.03years and <math><mrow><mn>1.67</mn><mfrac><mrow><mi>k</mi><mi>g</mi></mrow><mrow><msup><mi>m</mi><mn>2</mn></msup></mrow></mfrac></mrow></math>. For the percentage of sextant affected by lesions the mean absolute errors ranged between 7% to 12% with higher error values in the middle and upper sextants which exhibit more variability than the lower sextants. The retrieval system is currently available from https://rap.tbportals.niaid.nih.gov/find_similar_cxr.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12931 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016336/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tuberculosis Chest X-Ray Image Retrieval System Using Deep Learning Based Biomarker Predictions.\",\"authors\":\"Bradley C Lowekamp, Andrei Gabrielian, Darrell E Hurt, Alex Rosenthal, Ziv Yaniv\",\"doi\":\"10.1117/12.3006848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The world health organization's global tuberculosis (TB) report for 2022 identifies TB, with an estimated 1.6 million, as a leading cause of death. The number of new cases has risen since 2020, particularly the number of new drug-resistant cases, estimated at 450,000 in 2021. This is concerning, as treatment of patients with drug resistant TB is complex and may not always be successful. The NIAID TB Portals program is an international consortium with a primary focus on patient centric data collection and analysis for drug resistant TB. The data includes images, their associated radiological findings, clinical records, and socioeconomic information. This work describes a TB Portals' Chest X-ray based image retrieval system which enables precision medicine. An input image is used to retrieve similar images and the associated patient specific information, thus facilitating inspection of outcomes and treatment regimens from comparable patients. Image similarity is defined using clinically relevant biomarkers: gender, age, body mass index (BMI), and the percentage of lung affected per sextant. The biomarkers are predicted using variations of the DenseNet169 convolutional neural network. A multi-task approach is used to predict gender, age and BMI incorporating transfer learning from an initial training on the NIH Clinical Center CXR dataset to the TB portals dataset. The resulting gender AUC, age and BMI mean absolute errors were 0.9854, 4.03years and <math><mrow><mn>1.67</mn><mfrac><mrow><mi>k</mi><mi>g</mi></mrow><mrow><msup><mi>m</mi><mn>2</mn></msup></mrow></mfrac></mrow></math>. For the percentage of sextant affected by lesions the mean absolute errors ranged between 7% to 12% with higher error values in the middle and upper sextants which exhibit more variability than the lower sextants. The retrieval system is currently available from https://rap.tbportals.niaid.nih.gov/find_similar_cxr.</p>\",\"PeriodicalId\":74505,\"journal\":{\"name\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"volume\":\"12931 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016336/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3006848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3006848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

世界卫生组织 2022 年全球结核病(TB)报告指出,结核病是导致死亡的主要原因,估计有 160 万人死于结核病。自 2020 年以来,新病例的数量有所上升,尤其是新的耐药病例,估计 2021 年将达到 45 万例。这令人担忧,因为耐药结核病患者的治疗非常复杂,而且不一定总是成功。美国国立卫生研究院结核病门户网站计划是一个国际联盟,主要侧重于以患者为中心的耐药性结核病数据收集和分析。这些数据包括图像、相关的放射学检查结果、临床记录和社会经济信息。这项工作描述了基于胸部 X 光片的结核病门户图像检索系统,该系统可实现精准医疗。输入的图像可用于检索类似的图像和相关的患者特定信息,从而便于检查可比患者的治疗结果和治疗方案。图像相似性是通过临床相关的生物标志物来定义的:性别、年龄、体重指数(BMI)和每六分仪肺部受影响的百分比。这些生物标志物通过 DenseNet169 卷积神经网络的变体进行预测。采用多任务方法预测性别、年龄和体重指数,并从美国国立卫生研究院临床中心 CXR 数据集的初始训练到结核病门户数据集进行迁移学习。得出的性别 AUC、年龄和体重指数平均绝对误差分别为 0.9854、4.03 岁和 1.67kgm2。受病变影响的六分仪百分比的平均绝对误差介于 7% 到 12% 之间,中、上六分仪的误差值较高,比下六分仪表现出更大的可变性。检索系统目前可从 https://rap.tbportals.niaid.nih.gov/find_similar_cxr 获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tuberculosis Chest X-Ray Image Retrieval System Using Deep Learning Based Biomarker Predictions.

The world health organization's global tuberculosis (TB) report for 2022 identifies TB, with an estimated 1.6 million, as a leading cause of death. The number of new cases has risen since 2020, particularly the number of new drug-resistant cases, estimated at 450,000 in 2021. This is concerning, as treatment of patients with drug resistant TB is complex and may not always be successful. The NIAID TB Portals program is an international consortium with a primary focus on patient centric data collection and analysis for drug resistant TB. The data includes images, their associated radiological findings, clinical records, and socioeconomic information. This work describes a TB Portals' Chest X-ray based image retrieval system which enables precision medicine. An input image is used to retrieve similar images and the associated patient specific information, thus facilitating inspection of outcomes and treatment regimens from comparable patients. Image similarity is defined using clinically relevant biomarkers: gender, age, body mass index (BMI), and the percentage of lung affected per sextant. The biomarkers are predicted using variations of the DenseNet169 convolutional neural network. A multi-task approach is used to predict gender, age and BMI incorporating transfer learning from an initial training on the NIH Clinical Center CXR dataset to the TB portals dataset. The resulting gender AUC, age and BMI mean absolute errors were 0.9854, 4.03years and 1.67kgm2. For the percentage of sextant affected by lesions the mean absolute errors ranged between 7% to 12% with higher error values in the middle and upper sextants which exhibit more variability than the lower sextants. The retrieval system is currently available from https://rap.tbportals.niaid.nih.gov/find_similar_cxr.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信