Molecular VisionPub Date : 2024-02-10eCollection Date: 2024-01-01
Lasse Jørgensen Cehofski, Kentaro Kojima, Natsuki Kusada, Mathilde Schlippe Hansen, Danson Vasanthan Muttuvelu, Noëlle Bakker, Ingeborg Klaassen, Jakob Grauslund, Henrik Vorum, Bent Honoré
{"title":"糖尿病黄斑水肿的中央子野厚度:与房水蛋白质组的相关性","authors":"Lasse Jørgensen Cehofski, Kentaro Kojima, Natsuki Kusada, Mathilde Schlippe Hansen, Danson Vasanthan Muttuvelu, Noëlle Bakker, Ingeborg Klaassen, Jakob Grauslund, Henrik Vorum, Bent Honoré","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Diabetic macular edema (DME) is a sight-threatening complication of diabetes. Consequently, studying the proteome of DME may provide novel insights into underlying molecular mechanisms.</p><p><strong>Methods: </strong>In this study, aqueous humor samples from eyes with treatment-naïve clinically significant DME (n = 13) and age-matched controls (n = 11) were compared with label-free liquid chromatography-tandem mass spectrometry. Additional aqueous humor samples from eyes with treatment-naïve DME (n = 15) and controls (n = 8) were obtained for validation by enzyme-linked immunosorbent assay (ELISA). Best-corrected visual acuity (BCVA) was evaluated, and the severity of DME was measured as central subfield thickness (CST) employing optical coherence tomography. Control samples were obtained before cataract surgery. Significantly changed proteins were identified using a permutation-based calculation, with a false discovery rate of 0.05. A human donor eye with DME and a control eye were used for immunofluorescence.</p><p><strong>Results: </strong>A total of 101 proteins were differentially expressed in the DME. Regulated proteins were involved in complement activation, glycolysis, extracellular matrix interaction, and cholesterol metabolism. The highest-fold change was observed for the fibrinogen alpha chain (fold change = 17.8). Complement components C2, C5, and C8, fibronectin, and hepatocyte growth factor-like protein were increased in DME and correlated with best-corrected visual acuity (BCVA). Ceruloplasmin and complement component C8 correlated with central subfield thickness (CST). Hemopexin, plasma kallikrein, monocyte differentiation antigen CD14 (CD14), and lipopolysaccharide-binding protein (LBP) were upregulated in the DME. LBP was correlated with vascular endothelial growth factor. The increased level of LBP in DME was confirmed using ELISA. The proteins involved in desmosomal integrity, including desmocollin-1 and desmoglein-1, were downregulated in DME and correlated negatively with CST. Immunofluorescence confirmed the extravasation of fibrinogen at the retinal level in the DME.</p><p><strong>Conclusion: </strong>Elevated levels of pro-inflammatory proteins, including the complement components LBP and CD14, were observed in DME. DME was associated with the loss of basal membrane proteins, compromised desmosomal integrity, and perturbation of glycolysis.</p>","PeriodicalId":18866,"journal":{"name":"Molecular Vision","volume":"30 ","pages":"17-35"},"PeriodicalIF":1.8000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10994682/pdf/","citationCount":"0","resultStr":"{\"title\":\"Central subfield thickness of diabetic macular edema: Correlation with the aqueous humor proteome.\",\"authors\":\"Lasse Jørgensen Cehofski, Kentaro Kojima, Natsuki Kusada, Mathilde Schlippe Hansen, Danson Vasanthan Muttuvelu, Noëlle Bakker, Ingeborg Klaassen, Jakob Grauslund, Henrik Vorum, Bent Honoré\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Diabetic macular edema (DME) is a sight-threatening complication of diabetes. Consequently, studying the proteome of DME may provide novel insights into underlying molecular mechanisms.</p><p><strong>Methods: </strong>In this study, aqueous humor samples from eyes with treatment-naïve clinically significant DME (n = 13) and age-matched controls (n = 11) were compared with label-free liquid chromatography-tandem mass spectrometry. Additional aqueous humor samples from eyes with treatment-naïve DME (n = 15) and controls (n = 8) were obtained for validation by enzyme-linked immunosorbent assay (ELISA). Best-corrected visual acuity (BCVA) was evaluated, and the severity of DME was measured as central subfield thickness (CST) employing optical coherence tomography. Control samples were obtained before cataract surgery. Significantly changed proteins were identified using a permutation-based calculation, with a false discovery rate of 0.05. A human donor eye with DME and a control eye were used for immunofluorescence.</p><p><strong>Results: </strong>A total of 101 proteins were differentially expressed in the DME. Regulated proteins were involved in complement activation, glycolysis, extracellular matrix interaction, and cholesterol metabolism. The highest-fold change was observed for the fibrinogen alpha chain (fold change = 17.8). Complement components C2, C5, and C8, fibronectin, and hepatocyte growth factor-like protein were increased in DME and correlated with best-corrected visual acuity (BCVA). Ceruloplasmin and complement component C8 correlated with central subfield thickness (CST). Hemopexin, plasma kallikrein, monocyte differentiation antigen CD14 (CD14), and lipopolysaccharide-binding protein (LBP) were upregulated in the DME. LBP was correlated with vascular endothelial growth factor. The increased level of LBP in DME was confirmed using ELISA. The proteins involved in desmosomal integrity, including desmocollin-1 and desmoglein-1, were downregulated in DME and correlated negatively with CST. Immunofluorescence confirmed the extravasation of fibrinogen at the retinal level in the DME.</p><p><strong>Conclusion: </strong>Elevated levels of pro-inflammatory proteins, including the complement components LBP and CD14, were observed in DME. DME was associated with the loss of basal membrane proteins, compromised desmosomal integrity, and perturbation of glycolysis.</p>\",\"PeriodicalId\":18866,\"journal\":{\"name\":\"Molecular Vision\",\"volume\":\"30 \",\"pages\":\"17-35\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10994682/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Vision\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Vision","FirstCategoryId":"3","ListUrlMain":"","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Central subfield thickness of diabetic macular edema: Correlation with the aqueous humor proteome.
Purpose: Diabetic macular edema (DME) is a sight-threatening complication of diabetes. Consequently, studying the proteome of DME may provide novel insights into underlying molecular mechanisms.
Methods: In this study, aqueous humor samples from eyes with treatment-naïve clinically significant DME (n = 13) and age-matched controls (n = 11) were compared with label-free liquid chromatography-tandem mass spectrometry. Additional aqueous humor samples from eyes with treatment-naïve DME (n = 15) and controls (n = 8) were obtained for validation by enzyme-linked immunosorbent assay (ELISA). Best-corrected visual acuity (BCVA) was evaluated, and the severity of DME was measured as central subfield thickness (CST) employing optical coherence tomography. Control samples were obtained before cataract surgery. Significantly changed proteins were identified using a permutation-based calculation, with a false discovery rate of 0.05. A human donor eye with DME and a control eye were used for immunofluorescence.
Results: A total of 101 proteins were differentially expressed in the DME. Regulated proteins were involved in complement activation, glycolysis, extracellular matrix interaction, and cholesterol metabolism. The highest-fold change was observed for the fibrinogen alpha chain (fold change = 17.8). Complement components C2, C5, and C8, fibronectin, and hepatocyte growth factor-like protein were increased in DME and correlated with best-corrected visual acuity (BCVA). Ceruloplasmin and complement component C8 correlated with central subfield thickness (CST). Hemopexin, plasma kallikrein, monocyte differentiation antigen CD14 (CD14), and lipopolysaccharide-binding protein (LBP) were upregulated in the DME. LBP was correlated with vascular endothelial growth factor. The increased level of LBP in DME was confirmed using ELISA. The proteins involved in desmosomal integrity, including desmocollin-1 and desmoglein-1, were downregulated in DME and correlated negatively with CST. Immunofluorescence confirmed the extravasation of fibrinogen at the retinal level in the DME.
Conclusion: Elevated levels of pro-inflammatory proteins, including the complement components LBP and CD14, were observed in DME. DME was associated with the loss of basal membrane proteins, compromised desmosomal integrity, and perturbation of glycolysis.
期刊介绍:
Molecular Vision is a peer-reviewed journal dedicated to the dissemination of research results in molecular biology, cell biology, and the genetics of the visual system (ocular and cortical).
Molecular Vision publishes articles presenting original research that has not previously been published and comprehensive articles reviewing the current status of a particular field or topic. Submissions to Molecular Vision are subjected to rigorous peer review. Molecular Vision does NOT publish preprints.
For authors, Molecular Vision provides a rapid means of communicating important results. Access to Molecular Vision is free and unrestricted, allowing the widest possible audience for your article. Digital publishing allows you to use color images freely (and without fees). Additionally, you may publish animations, sounds, or other supplementary information that clarifies or supports your article. Each of the authors of an article may also list an electronic mail address (which will be updated upon request) to give interested readers easy access to authors.