{"title":"生理学的发展是趋同的,但却落后于城市的气候变暖。","authors":"Sarah E Diamond, Logan R Kolaske, Ryan A Martin","doi":"10.1093/icb/icae034","DOIUrl":null,"url":null,"abstract":"<p><p>Cities, through the generation of urban heat islands, provide a venue for exploring contemporary convergent evolution to climatic warming. We quantified how repeatable the evolution of heat tolerance, cold tolerance, and body size was among diverse lineages in response to urban heat islands. Our study revealed significant shifts toward higher heat tolerance and diminished cold tolerance among urban populations. We further found that the magnitude of trait divergence was significantly and positively associated with the magnitude of the urban heat island, suggesting that temperature played a major role in the observed divergence in thermal tolerance. Despite these trends, the magnitude of trait responses lagged behind environmental warming. Heat tolerance responses exhibited a deficit of 0.84°C for every 1°C increase in warming, suggesting limits on adaptive evolution and consequent adaptational lags. Other moderators were predictive of greater divergence in heat tolerance, including lower baseline tolerance and greater divergence in body size. Although terrestrial species did not exhibit systematic shifts toward larger or smaller body size, aquatic species exhibited significant shifts toward smaller body size in urban habitats. Our study demonstrates how cities can be used to address long-standing questions in evolutionary biology regarding the repeatability of evolution. Importantly, this work also shows how cities can be used as forecasting tools by quantifying adaptational lags and by developing trait-based associations with responses to contemporary warming.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physiology Evolves Convergently but Lags Behind Warming in Cities.\",\"authors\":\"Sarah E Diamond, Logan R Kolaske, Ryan A Martin\",\"doi\":\"10.1093/icb/icae034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cities, through the generation of urban heat islands, provide a venue for exploring contemporary convergent evolution to climatic warming. We quantified how repeatable the evolution of heat tolerance, cold tolerance, and body size was among diverse lineages in response to urban heat islands. Our study revealed significant shifts toward higher heat tolerance and diminished cold tolerance among urban populations. We further found that the magnitude of trait divergence was significantly and positively associated with the magnitude of the urban heat island, suggesting that temperature played a major role in the observed divergence in thermal tolerance. Despite these trends, the magnitude of trait responses lagged behind environmental warming. Heat tolerance responses exhibited a deficit of 0.84°C for every 1°C increase in warming, suggesting limits on adaptive evolution and consequent adaptational lags. Other moderators were predictive of greater divergence in heat tolerance, including lower baseline tolerance and greater divergence in body size. Although terrestrial species did not exhibit systematic shifts toward larger or smaller body size, aquatic species exhibited significant shifts toward smaller body size in urban habitats. Our study demonstrates how cities can be used to address long-standing questions in evolutionary biology regarding the repeatability of evolution. Importantly, this work also shows how cities can be used as forecasting tools by quantifying adaptational lags and by developing trait-based associations with responses to contemporary warming.</p>\",\"PeriodicalId\":54971,\"journal\":{\"name\":\"Integrative and Comparative Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative and Comparative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/icb/icae034\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icae034","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Physiology Evolves Convergently but Lags Behind Warming in Cities.
Cities, through the generation of urban heat islands, provide a venue for exploring contemporary convergent evolution to climatic warming. We quantified how repeatable the evolution of heat tolerance, cold tolerance, and body size was among diverse lineages in response to urban heat islands. Our study revealed significant shifts toward higher heat tolerance and diminished cold tolerance among urban populations. We further found that the magnitude of trait divergence was significantly and positively associated with the magnitude of the urban heat island, suggesting that temperature played a major role in the observed divergence in thermal tolerance. Despite these trends, the magnitude of trait responses lagged behind environmental warming. Heat tolerance responses exhibited a deficit of 0.84°C for every 1°C increase in warming, suggesting limits on adaptive evolution and consequent adaptational lags. Other moderators were predictive of greater divergence in heat tolerance, including lower baseline tolerance and greater divergence in body size. Although terrestrial species did not exhibit systematic shifts toward larger or smaller body size, aquatic species exhibited significant shifts toward smaller body size in urban habitats. Our study demonstrates how cities can be used to address long-standing questions in evolutionary biology regarding the repeatability of evolution. Importantly, this work also shows how cities can be used as forecasting tools by quantifying adaptational lags and by developing trait-based associations with responses to contemporary warming.
期刊介绍:
Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.