Stacie K Totsch, Andrew S Ishizuka, Kyung-Don Kang, Sam E Gary, Abbey Rocco, Aaron E Fan, Li Zhou, Pablo A Valdes, SeungHo Lee, Jason Li, Luca Peruzzotti-Jametti, Sarah Blitz, Christopher M Garliss, James M Johnston, James M Markert, Geoffrey M Lynn, Joshua D Bernstock, Gregory K Friedman
{"title":"疫苗与溶解性 HSV 病毒疗法的联合免疫疗法取决于时间。","authors":"Stacie K Totsch, Andrew S Ishizuka, Kyung-Don Kang, Sam E Gary, Abbey Rocco, Aaron E Fan, Li Zhou, Pablo A Valdes, SeungHo Lee, Jason Li, Luca Peruzzotti-Jametti, Sarah Blitz, Christopher M Garliss, James M Johnston, James M Markert, Geoffrey M Lynn, Joshua D Bernstock, Gregory K Friedman","doi":"10.1158/1535-7163.MCT-23-0873","DOIUrl":null,"url":null,"abstract":"<p><p>Oncolytic virotherapy or immunovirotherapy is a strategy that utilizes viruses to selectively infect and kill tumor cells while also stimulating an immune response against the tumor. Early clinical trials in both pediatric and adult patients using oncolytic herpes simplex viruses (oHSV) have demonstrated safety and promising efficacy; however, combinatorial strategies designed to enhance oncolysis while also promoting durable T-cell responses for sustaining disease remission are likely required. We hypothesized that combining the direct tumor cell killing and innate immune stimulation by oHSV with a vaccine that promotes T cell-mediated immunity may lead to more durable tumor regression. To this end, we investigated the preclinical efficacy and potential synergy of combining oHSV with a self-assembling nanoparticle vaccine codelivering peptide antigens and Toll-like receptor 7 and 8 agonists (referred to as SNAPvax),which induces robust tumor-specific T-cell immunity. We then assessed how timing of the treatments (i.e., vaccine before or after oHSV) impacts T-cell responses, viral replication, and preclinical efficacy. The sequence of treatments was critical, as survival was significantly enhanced when the SNAPvax vaccine was given prior to oHSV. Increased clinical efficacy was associated with reduced tumor volume and increases in virus replication and tumor antigen-specific CD8+ T cells. These findings substantiate the criticality of combination immunotherapy timing and provide preclinical support for combining SNAPvax with oHSV as a promising treatment approach for both pediatric and adult tumors.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1273-1281"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374504/pdf/","citationCount":"0","resultStr":"{\"title\":\"Combination Immunotherapy with Vaccine and Oncolytic HSV Virotherapy Is Time Dependent.\",\"authors\":\"Stacie K Totsch, Andrew S Ishizuka, Kyung-Don Kang, Sam E Gary, Abbey Rocco, Aaron E Fan, Li Zhou, Pablo A Valdes, SeungHo Lee, Jason Li, Luca Peruzzotti-Jametti, Sarah Blitz, Christopher M Garliss, James M Johnston, James M Markert, Geoffrey M Lynn, Joshua D Bernstock, Gregory K Friedman\",\"doi\":\"10.1158/1535-7163.MCT-23-0873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oncolytic virotherapy or immunovirotherapy is a strategy that utilizes viruses to selectively infect and kill tumor cells while also stimulating an immune response against the tumor. Early clinical trials in both pediatric and adult patients using oncolytic herpes simplex viruses (oHSV) have demonstrated safety and promising efficacy; however, combinatorial strategies designed to enhance oncolysis while also promoting durable T-cell responses for sustaining disease remission are likely required. We hypothesized that combining the direct tumor cell killing and innate immune stimulation by oHSV with a vaccine that promotes T cell-mediated immunity may lead to more durable tumor regression. To this end, we investigated the preclinical efficacy and potential synergy of combining oHSV with a self-assembling nanoparticle vaccine codelivering peptide antigens and Toll-like receptor 7 and 8 agonists (referred to as SNAPvax),which induces robust tumor-specific T-cell immunity. We then assessed how timing of the treatments (i.e., vaccine before or after oHSV) impacts T-cell responses, viral replication, and preclinical efficacy. The sequence of treatments was critical, as survival was significantly enhanced when the SNAPvax vaccine was given prior to oHSV. Increased clinical efficacy was associated with reduced tumor volume and increases in virus replication and tumor antigen-specific CD8+ T cells. These findings substantiate the criticality of combination immunotherapy timing and provide preclinical support for combining SNAPvax with oHSV as a promising treatment approach for both pediatric and adult tumors.</p>\",\"PeriodicalId\":18791,\"journal\":{\"name\":\"Molecular Cancer Therapeutics\",\"volume\":\" \",\"pages\":\"1273-1281\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374504/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1535-7163.MCT-23-0873\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-23-0873","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
目的:溶瘤病毒疗法或免疫疗法是一种利用病毒有选择性地感染和杀死肿瘤细胞,同时激发针对肿瘤的免疫反应的策略。使用溶瘤性单纯疱疹病毒(oHSVs)对儿童和成人患者进行的早期临床试验已经证明了其安全性和良好的疗效;然而,可能需要采取组合策略,在增强溶瘤作用的同时促进持久的 T 细胞反应,以维持疾病缓解。我们假设,将 oHSV 对肿瘤细胞的直接杀伤和先天性免疫刺激与促进 T 细胞介导免疫的疫苗相结合,可能会导致更持久的肿瘤消退:为此,我们研究了将 oHSV 与共同递送多肽抗原和 Toll 样受体-7 和-8 激动剂(TLR-7/8a)的自组装纳米粒子疫苗(简称 SNAPvax™)相结合的临床前疗效和潜在协同作用,该疫苗可诱导强大的肿瘤特异性 T 细胞免疫。然后,我们评估了治疗时机(即在 oHSV 之前或之后接种疫苗)对 T 细胞反应、病毒复制和临床前疗效的影响:结果:治疗的顺序至关重要,因为在oHSV之前接种SNAPvax™疫苗可显著提高存活率。临床疗效的提高与肿瘤体积缩小、病毒复制和肿瘤抗原特异性 CD8+ T 细胞增加有关:这些研究结果证明了联合免疫疗法时机的重要性,并为将 SNAPvax 与 oHSV 作为一种治疗儿童和成人肿瘤的有效方法提供了临床前支持。
Combination Immunotherapy with Vaccine and Oncolytic HSV Virotherapy Is Time Dependent.
Oncolytic virotherapy or immunovirotherapy is a strategy that utilizes viruses to selectively infect and kill tumor cells while also stimulating an immune response against the tumor. Early clinical trials in both pediatric and adult patients using oncolytic herpes simplex viruses (oHSV) have demonstrated safety and promising efficacy; however, combinatorial strategies designed to enhance oncolysis while also promoting durable T-cell responses for sustaining disease remission are likely required. We hypothesized that combining the direct tumor cell killing and innate immune stimulation by oHSV with a vaccine that promotes T cell-mediated immunity may lead to more durable tumor regression. To this end, we investigated the preclinical efficacy and potential synergy of combining oHSV with a self-assembling nanoparticle vaccine codelivering peptide antigens and Toll-like receptor 7 and 8 agonists (referred to as SNAPvax),which induces robust tumor-specific T-cell immunity. We then assessed how timing of the treatments (i.e., vaccine before or after oHSV) impacts T-cell responses, viral replication, and preclinical efficacy. The sequence of treatments was critical, as survival was significantly enhanced when the SNAPvax vaccine was given prior to oHSV. Increased clinical efficacy was associated with reduced tumor volume and increases in virus replication and tumor antigen-specific CD8+ T cells. These findings substantiate the criticality of combination immunotherapy timing and provide preclinical support for combining SNAPvax with oHSV as a promising treatment approach for both pediatric and adult tumors.
期刊介绍:
Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.