{"title":"利用智能卡数据对轨道交通系统中的路线选择进行估算:处理车辆时刻表和步行时间的不确定性。","authors":"Thomas James Tiam-Lee, Rui Henriques","doi":"10.1186/s12544-022-00558-x","DOIUrl":null,"url":null,"abstract":"<p><p>Several cities around the world rely on urban rail transit systems composed of interconnected lines, serving massive numbers of passengers on a daily basis. Accessing the location of passengers is essential to ensure the efficient and safe operation and planning of these systems. However, passenger route choices between origin and destination pairs are variable, depending on the subjective perception of travel and waiting times, required transfers, convenience factors, and on-site vehicle arrivals. This work proposes a robust methodology to estimate passenger route choices based only on automated fare collection data, i.e. without privacy-invasive sensors and monitoring devices. Unlike previous approaches, our method does not require precise train timetable information or prior route choice models, and is robust to unforeseen operational events like malfunctions and delays. Train arrival times are inferred from passenger volume spikes at the exit gates, and the likelihood of eligible routes per passenger estimated based on the alignment between vehicle location and the passenger timings of entrance and exit. Applying this approach to automated fare collection data in Lisbon, we find that while in most cases passengers preferred the route with the least transfers, there were a significant number of cases where the shorter distance was preferred. Our findings are valuable for decision support among rail operators in various aspects such as passenger traffic bottleneck resolution, train allocation and scheduling, and placement of services.</p>","PeriodicalId":48671,"journal":{"name":"European Transport Research Review","volume":"14 1","pages":"31"},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9294782/pdf/","citationCount":"0","resultStr":"{\"title\":\"Route choice estimation in rail transit systems using smart card data: handling vehicle schedule and walking time uncertainties.\",\"authors\":\"Thomas James Tiam-Lee, Rui Henriques\",\"doi\":\"10.1186/s12544-022-00558-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several cities around the world rely on urban rail transit systems composed of interconnected lines, serving massive numbers of passengers on a daily basis. Accessing the location of passengers is essential to ensure the efficient and safe operation and planning of these systems. However, passenger route choices between origin and destination pairs are variable, depending on the subjective perception of travel and waiting times, required transfers, convenience factors, and on-site vehicle arrivals. This work proposes a robust methodology to estimate passenger route choices based only on automated fare collection data, i.e. without privacy-invasive sensors and monitoring devices. Unlike previous approaches, our method does not require precise train timetable information or prior route choice models, and is robust to unforeseen operational events like malfunctions and delays. Train arrival times are inferred from passenger volume spikes at the exit gates, and the likelihood of eligible routes per passenger estimated based on the alignment between vehicle location and the passenger timings of entrance and exit. Applying this approach to automated fare collection data in Lisbon, we find that while in most cases passengers preferred the route with the least transfers, there were a significant number of cases where the shorter distance was preferred. Our findings are valuable for decision support among rail operators in various aspects such as passenger traffic bottleneck resolution, train allocation and scheduling, and placement of services.</p>\",\"PeriodicalId\":48671,\"journal\":{\"name\":\"European Transport Research Review\",\"volume\":\"14 1\",\"pages\":\"31\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9294782/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Transport Research Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12544-022-00558-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Transport Research Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12544-022-00558-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Route choice estimation in rail transit systems using smart card data: handling vehicle schedule and walking time uncertainties.
Several cities around the world rely on urban rail transit systems composed of interconnected lines, serving massive numbers of passengers on a daily basis. Accessing the location of passengers is essential to ensure the efficient and safe operation and planning of these systems. However, passenger route choices between origin and destination pairs are variable, depending on the subjective perception of travel and waiting times, required transfers, convenience factors, and on-site vehicle arrivals. This work proposes a robust methodology to estimate passenger route choices based only on automated fare collection data, i.e. without privacy-invasive sensors and monitoring devices. Unlike previous approaches, our method does not require precise train timetable information or prior route choice models, and is robust to unforeseen operational events like malfunctions and delays. Train arrival times are inferred from passenger volume spikes at the exit gates, and the likelihood of eligible routes per passenger estimated based on the alignment between vehicle location and the passenger timings of entrance and exit. Applying this approach to automated fare collection data in Lisbon, we find that while in most cases passengers preferred the route with the least transfers, there were a significant number of cases where the shorter distance was preferred. Our findings are valuable for decision support among rail operators in various aspects such as passenger traffic bottleneck resolution, train allocation and scheduling, and placement of services.
期刊介绍:
European Transport Research Review (ETRR) is a peer-reviewed open access journal publishing original high-quality scholarly research and developments in areas related to transportation science, technologies, policy and practice. Established in 2008 by the European Conference of Transport Research Institutes (ECTRI), the Journal provides researchers and practitioners around the world with an authoritative forum for the dissemination and critical discussion of new ideas and methodologies that originate in, or are of special interest to, the European transport research community. The journal is unique in its field, as it covers all modes of transport and addresses both the engineering and the social science perspective, offering a truly multidisciplinary platform for researchers, practitioners, engineers and policymakers. ETRR is aimed at a readership including researchers, practitioners in the design and operation of transportation systems, and policymakers at the international, national, regional and local levels.