{"title":"使用 PSA 技术的小型医用氧气生产装置:建模和敏感性分析。","authors":"Lina Benkirane, Abdessamad Samid, Tarik Chafik","doi":"10.1080/03091902.2024.2331693","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a solid approach for small-scale medical oxygen production unit using pressure swing adsorption (PSA) technology. The objective of this research is to develop a mathematical model and conduct a sensitivity analysis to optimise the design and operating parameters of the PSA system. Based on the simulation results, an optimal set of operational parameter values has been obtained for the PSA beds. The result shows that the binary system produced oxygen with a purity of 94%, at the adsorption pressure 1 bar and temperature of 308K. The findings demonstrate the effectiveness of the proposed small-scale PSA system for medical oxygen production, highlighting the impact of key parameters and emphasising the need for careful optimisation. The findings serve as a guide for the design and operation of small-scale PSA systems, enabling healthcare facilities to produce their own medical oxygen, thereby improving accessibility and addressing critical shortages during emergencies. Future research may explore the integration of large scale PSA units in hospitals in Morocco.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small-scale medical oxygen production unit using PSA technology: modeling and sensitivity analysis.\",\"authors\":\"Lina Benkirane, Abdessamad Samid, Tarik Chafik\",\"doi\":\"10.1080/03091902.2024.2331693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents a solid approach for small-scale medical oxygen production unit using pressure swing adsorption (PSA) technology. The objective of this research is to develop a mathematical model and conduct a sensitivity analysis to optimise the design and operating parameters of the PSA system. Based on the simulation results, an optimal set of operational parameter values has been obtained for the PSA beds. The result shows that the binary system produced oxygen with a purity of 94%, at the adsorption pressure 1 bar and temperature of 308K. The findings demonstrate the effectiveness of the proposed small-scale PSA system for medical oxygen production, highlighting the impact of key parameters and emphasising the need for careful optimisation. The findings serve as a guide for the design and operation of small-scale PSA systems, enabling healthcare facilities to produce their own medical oxygen, thereby improving accessibility and addressing critical shortages during emergencies. Future research may explore the integration of large scale PSA units in hospitals in Morocco.</p>\",\"PeriodicalId\":39637,\"journal\":{\"name\":\"Journal of Medical Engineering and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03091902.2024.2331693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2024.2331693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Small-scale medical oxygen production unit using PSA technology: modeling and sensitivity analysis.
This study presents a solid approach for small-scale medical oxygen production unit using pressure swing adsorption (PSA) technology. The objective of this research is to develop a mathematical model and conduct a sensitivity analysis to optimise the design and operating parameters of the PSA system. Based on the simulation results, an optimal set of operational parameter values has been obtained for the PSA beds. The result shows that the binary system produced oxygen with a purity of 94%, at the adsorption pressure 1 bar and temperature of 308K. The findings demonstrate the effectiveness of the proposed small-scale PSA system for medical oxygen production, highlighting the impact of key parameters and emphasising the need for careful optimisation. The findings serve as a guide for the design and operation of small-scale PSA systems, enabling healthcare facilities to produce their own medical oxygen, thereby improving accessibility and addressing critical shortages during emergencies. Future research may explore the integration of large scale PSA units in hospitals in Morocco.
期刊介绍:
The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.