Barbara Kędzierska, Aleksandra Stodolna, Katarzyna Bryszkowska, Maciej Dylewski, Katarzyna Potrykus
{"title":"纯化大肠杆菌全部七种 RNA 聚合酶 sigma 因子的简单统一方案。","authors":"Barbara Kędzierska, Aleksandra Stodolna, Katarzyna Bryszkowska, Maciej Dylewski, Katarzyna Potrykus","doi":"10.1007/s13353-024-00870-3","DOIUrl":null,"url":null,"abstract":"<p><p>RNA polymerase sigma factors are indispensable in the process of bacterial transcription. They are responsible for a given gene's promoter region recognition on template DNA and hence determine specificity of RNA polymerase and play a significant role in gene expression regulation. Here, we present a simple and unified protocol for purification of all seven Escherichia coli RNA polymerase sigma factors. In our approach, we took advantage of the His<sub>8</sub>-SUMO tag, known to increase protein solubilization. Sigma factors were first purified in N-terminal fusions with this tag, which was followed by tag removal with Ulp1 protease. This allowed to obtain proteins in their native form. In addition, the procedure is simple and requires only one resin type. With the general protocol we employed, we were able to successfully purify σ<sup>D</sup>, σ<sup>E</sup>, σ<sup>S</sup>, and σ<sup>N</sup>. Final step modification was required for σ<sup>F</sup>, while for σ<sup>H</sup> and σ<sup>FecI</sup>, denaturing conditions had to be applied. All seven sigma factors were fully functional in forming an active holoenzyme with core RNA polymerase which we demonstrated with EMSA studies.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310293/pdf/","citationCount":"0","resultStr":"{\"title\":\"A simple and unified protocol to purify all seven Escherichia coli RNA polymerase sigma factors.\",\"authors\":\"Barbara Kędzierska, Aleksandra Stodolna, Katarzyna Bryszkowska, Maciej Dylewski, Katarzyna Potrykus\",\"doi\":\"10.1007/s13353-024-00870-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RNA polymerase sigma factors are indispensable in the process of bacterial transcription. They are responsible for a given gene's promoter region recognition on template DNA and hence determine specificity of RNA polymerase and play a significant role in gene expression regulation. Here, we present a simple and unified protocol for purification of all seven Escherichia coli RNA polymerase sigma factors. In our approach, we took advantage of the His<sub>8</sub>-SUMO tag, known to increase protein solubilization. Sigma factors were first purified in N-terminal fusions with this tag, which was followed by tag removal with Ulp1 protease. This allowed to obtain proteins in their native form. In addition, the procedure is simple and requires only one resin type. With the general protocol we employed, we were able to successfully purify σ<sup>D</sup>, σ<sup>E</sup>, σ<sup>S</sup>, and σ<sup>N</sup>. Final step modification was required for σ<sup>F</sup>, while for σ<sup>H</sup> and σ<sup>FecI</sup>, denaturing conditions had to be applied. All seven sigma factors were fully functional in forming an active holoenzyme with core RNA polymerase which we demonstrated with EMSA studies.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310293/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13353-024-00870-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13353-024-00870-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A simple and unified protocol to purify all seven Escherichia coli RNA polymerase sigma factors.
RNA polymerase sigma factors are indispensable in the process of bacterial transcription. They are responsible for a given gene's promoter region recognition on template DNA and hence determine specificity of RNA polymerase and play a significant role in gene expression regulation. Here, we present a simple and unified protocol for purification of all seven Escherichia coli RNA polymerase sigma factors. In our approach, we took advantage of the His8-SUMO tag, known to increase protein solubilization. Sigma factors were first purified in N-terminal fusions with this tag, which was followed by tag removal with Ulp1 protease. This allowed to obtain proteins in their native form. In addition, the procedure is simple and requires only one resin type. With the general protocol we employed, we were able to successfully purify σD, σE, σS, and σN. Final step modification was required for σF, while for σH and σFecI, denaturing conditions had to be applied. All seven sigma factors were fully functional in forming an active holoenzyme with core RNA polymerase which we demonstrated with EMSA studies.