Ravina Mistry, Dominic P Byrne, David Starns, Igor L Barsukov, Edwin A Yates, David G Fernig
{"title":"多糖磺基转移酶:推定序列的鉴定和各自的功能特征。","authors":"Ravina Mistry, Dominic P Byrne, David Starns, Igor L Barsukov, Edwin A Yates, David G Fernig","doi":"10.1042/EBC20230094","DOIUrl":null,"url":null,"abstract":"<p><p>The vast structural diversity of sulfated polysaccharides demands an equally diverse array of enzymes known as polysaccharide sulfotransferases (PSTs). PSTs are present across all kingdoms of life, including algae, fungi and archaea, and their sulfation pathways are relatively unexplored. Sulfated polysaccharides possess anti-inflammatory, anticoagulant and anti-cancer properties and have great therapeutic potential. Current identification of PSTs using Pfam has been predominantly focused on the identification of glycosaminoglycan (GAG) sulfotransferases because of their pivotal roles in cell communication, extracellular matrix formation and coagulation. As a result, our knowledge of non-GAG PSTs structure and function remains limited. The major sulfotransferase families, Sulfotransfer_1 and Sulfotransfer_2, display broad homology and should enable the capture of a wide assortment of sulfotransferases but are limited in non-GAG PST sequence annotation. In addition, sequence annotation is further restricted by the paucity of biochemical analyses of PSTs. There are now high-throughput and robust assays for sulfotransferases such as colorimetric PAPS (3'-phosphoadenosine 5'-phosphosulfate) coupled assays, Europium-based fluorescent probes for ratiometric PAP (3'-phosphoadenosine-5'-phosphate) detection, and NMR methods for activity and product analysis. These techniques provide real-time and direct measurements to enhance the functional annotation and subsequent analysis of sulfated polysaccharides across the tree of life to improve putative PST identification and characterisation of function. Improved annotation and biochemical analysis of PST sequences will enhance the utility of PSTs across biomedical and biotechnological sectors.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polysaccharide sulfotransferases: the identification of putative sequences and respective functional characterisation.\",\"authors\":\"Ravina Mistry, Dominic P Byrne, David Starns, Igor L Barsukov, Edwin A Yates, David G Fernig\",\"doi\":\"10.1042/EBC20230094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The vast structural diversity of sulfated polysaccharides demands an equally diverse array of enzymes known as polysaccharide sulfotransferases (PSTs). PSTs are present across all kingdoms of life, including algae, fungi and archaea, and their sulfation pathways are relatively unexplored. Sulfated polysaccharides possess anti-inflammatory, anticoagulant and anti-cancer properties and have great therapeutic potential. Current identification of PSTs using Pfam has been predominantly focused on the identification of glycosaminoglycan (GAG) sulfotransferases because of their pivotal roles in cell communication, extracellular matrix formation and coagulation. As a result, our knowledge of non-GAG PSTs structure and function remains limited. The major sulfotransferase families, Sulfotransfer_1 and Sulfotransfer_2, display broad homology and should enable the capture of a wide assortment of sulfotransferases but are limited in non-GAG PST sequence annotation. In addition, sequence annotation is further restricted by the paucity of biochemical analyses of PSTs. There are now high-throughput and robust assays for sulfotransferases such as colorimetric PAPS (3'-phosphoadenosine 5'-phosphosulfate) coupled assays, Europium-based fluorescent probes for ratiometric PAP (3'-phosphoadenosine-5'-phosphate) detection, and NMR methods for activity and product analysis. These techniques provide real-time and direct measurements to enhance the functional annotation and subsequent analysis of sulfated polysaccharides across the tree of life to improve putative PST identification and characterisation of function. Improved annotation and biochemical analysis of PST sequences will enhance the utility of PSTs across biomedical and biotechnological sectors.</p>\",\"PeriodicalId\":11812,\"journal\":{\"name\":\"Essays in biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Essays in biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/EBC20230094\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essays in biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/EBC20230094","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Polysaccharide sulfotransferases: the identification of putative sequences and respective functional characterisation.
The vast structural diversity of sulfated polysaccharides demands an equally diverse array of enzymes known as polysaccharide sulfotransferases (PSTs). PSTs are present across all kingdoms of life, including algae, fungi and archaea, and their sulfation pathways are relatively unexplored. Sulfated polysaccharides possess anti-inflammatory, anticoagulant and anti-cancer properties and have great therapeutic potential. Current identification of PSTs using Pfam has been predominantly focused on the identification of glycosaminoglycan (GAG) sulfotransferases because of their pivotal roles in cell communication, extracellular matrix formation and coagulation. As a result, our knowledge of non-GAG PSTs structure and function remains limited. The major sulfotransferase families, Sulfotransfer_1 and Sulfotransfer_2, display broad homology and should enable the capture of a wide assortment of sulfotransferases but are limited in non-GAG PST sequence annotation. In addition, sequence annotation is further restricted by the paucity of biochemical analyses of PSTs. There are now high-throughput and robust assays for sulfotransferases such as colorimetric PAPS (3'-phosphoadenosine 5'-phosphosulfate) coupled assays, Europium-based fluorescent probes for ratiometric PAP (3'-phosphoadenosine-5'-phosphate) detection, and NMR methods for activity and product analysis. These techniques provide real-time and direct measurements to enhance the functional annotation and subsequent analysis of sulfated polysaccharides across the tree of life to improve putative PST identification and characterisation of function. Improved annotation and biochemical analysis of PST sequences will enhance the utility of PSTs across biomedical and biotechnological sectors.
期刊介绍:
Essays in Biochemistry publishes short, digestible reviews from experts highlighting recent key topics in biochemistry and the molecular biosciences. Written to be accessible for those not yet immersed in the subject, each article is an up-to-date, self-contained summary of the topic.
Bridging the gap between the latest research and established textbooks, Essays in Biochemistry will tell you what you need to know to begin exploring the field, as each article includes the top take-home messages as summary points.
Each issue of the journal is guest edited by a key opinion leader in the area, and whether you are continuing your studies or moving into a new research area, the Journal gives a complete picture in one place.
Essays in Biochemistry is proud to publish Understanding Biochemistry, an essential online resource for post-16 students, teachers and undergraduates. Providing up-to-date overviews of key concepts in biochemistry and the molecular biosciences, the Understanding Biochemistry issues of Essays in Biochemistry are published annually in October.