{"title":"使用荧光蛋白稳定表达的相关光电子显微镜工作流程的一些技巧和窍门。","authors":"Elina Mäntylä, Paul Verkade","doi":"10.1016/bs.mcb.2024.02.032","DOIUrl":null,"url":null,"abstract":"<p><p>Correlative Light Electron Microscopy (CLEM) encompasses a wide range of experimental approaches with different degrees of complexity and technical challenges where the attributes of both light and electron microscopy are combined in a single experiment. Although the biological question always determines what technology is the most appropriate, we generally set out to apply the simplest workflow possible. For 2D cell cultures expressing fluorescently tagged molecules, we report on a simple and very powerful CLEM approach by using gridded finder imaging dishes. We first determine the gross localization of the fluorescence using light microscopy and subsequently we retrace the origin/localization of the fluorescence by projecting it onto the ultrastructural reference space obtained by transmission electron microscopy (TEM). Here we describe this workflow and highlight some basic principles of the sample preparation for such a simple CLEM experiment. We will specifically focus on the steps following the resin embedding for TEM and the introduction of the sample in the electron microscope.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some tips and tricks for a Correlative Light Electron Microscopy workflow using stable expression of fluorescent proteins.\",\"authors\":\"Elina Mäntylä, Paul Verkade\",\"doi\":\"10.1016/bs.mcb.2024.02.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Correlative Light Electron Microscopy (CLEM) encompasses a wide range of experimental approaches with different degrees of complexity and technical challenges where the attributes of both light and electron microscopy are combined in a single experiment. Although the biological question always determines what technology is the most appropriate, we generally set out to apply the simplest workflow possible. For 2D cell cultures expressing fluorescently tagged molecules, we report on a simple and very powerful CLEM approach by using gridded finder imaging dishes. We first determine the gross localization of the fluorescence using light microscopy and subsequently we retrace the origin/localization of the fluorescence by projecting it onto the ultrastructural reference space obtained by transmission electron microscopy (TEM). Here we describe this workflow and highlight some basic principles of the sample preparation for such a simple CLEM experiment. We will specifically focus on the steps following the resin embedding for TEM and the introduction of the sample in the electron microscope.</p>\",\"PeriodicalId\":18437,\"journal\":{\"name\":\"Methods in cell biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in cell biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.mcb.2024.02.032\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2024.02.032","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
摘要
相关光电子显微镜(CLEM)包括一系列复杂程度和技术难度不同的实验方法,在单个实验中结合了光镜和电子显微镜的特性。虽然生物学问题总是决定了哪种技术最合适,但我们通常会尽可能采用最简单的工作流程。对于表达荧光标记分子的二维细胞培养物,我们报告了一种简单而功能强大的 CLEM 方法,即使用网格查找器成像盘。我们首先使用光学显微镜确定荧光的总体定位,然后通过将荧光投射到透射电子显微镜(TEM)获得的超微结构参考空间来追溯荧光的起源/定位。在此,我们将对这一工作流程进行描述,并重点介绍这种简单的 CLEM 实验的样品制备的一些基本原则。我们将特别关注用于 TEM 的树脂包埋和将样品引入电子显微镜之后的步骤。
Some tips and tricks for a Correlative Light Electron Microscopy workflow using stable expression of fluorescent proteins.
Correlative Light Electron Microscopy (CLEM) encompasses a wide range of experimental approaches with different degrees of complexity and technical challenges where the attributes of both light and electron microscopy are combined in a single experiment. Although the biological question always determines what technology is the most appropriate, we generally set out to apply the simplest workflow possible. For 2D cell cultures expressing fluorescently tagged molecules, we report on a simple and very powerful CLEM approach by using gridded finder imaging dishes. We first determine the gross localization of the fluorescence using light microscopy and subsequently we retrace the origin/localization of the fluorescence by projecting it onto the ultrastructural reference space obtained by transmission electron microscopy (TEM). Here we describe this workflow and highlight some basic principles of the sample preparation for such a simple CLEM experiment. We will specifically focus on the steps following the resin embedding for TEM and the introduction of the sample in the electron microscope.
期刊介绍:
For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.