使用 TAT-Cre 重组酶在体外精密切割肺片 (PCLS) 中进行浮游基因操作的新方法。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sek-Shir Cheong, Tiago C Luis, Matthew Hind, Charlotte H Dean
{"title":"使用 TAT-Cre 重组酶在体外精密切割肺片 (PCLS) 中进行浮游基因操作的新方法。","authors":"Sek-Shir Cheong, Tiago C Luis, Matthew Hind, Charlotte H Dean","doi":"10.21769/BioProtoc.4980","DOIUrl":null,"url":null,"abstract":"<p><p>Precision-cut lung slices (PCLS), ex vivo 3D lung tissue models, have been widely used for various applications in lung research. PCLS serve as an excellent intermediary between in vitro and in vivo models because they retain all resident cell types within their natural niche while preserving the extracellular matrix environment. This protocol describes the TReATS (TAT-Cre recombinase-mediated floxed allele modification in tissue slices) method that enables rapid and efficient gene modification in PCLS derived from adult floxed animals. Here, we present detailed protocols for the TReATS method, consisting of two simple steps: PCLS generation and incubation in a TAT-Cre recombinase solution. Subsequent validation of gene modification involves live staining and imaging of PCLS, quantitative real-time PCR, and cell viability assessment. This four-day protocol eliminates the need for complex Cre-breeding, circumvents issues with premature lethality related to gene mutation, and significantly reduces the use of animals. The TReATS method offers a simple and reproducible solution for gene modification in complex ex vivo tissue-based models, accelerating the study of gene function, disease mechanisms, and the discovery of drug targets. Key features • Achieve permanent ex vivo gene modifications in complex tissue-based models within four days. • Highly adaptable gene modification method that can be applied to induce gene deletion or activation. • Allows simple Cre dosage testing in a controlled ex vivo setting with the advantage of using PCLS generated from the same animal as <i>true controls</i>. • With optimisation, this method can be applied to precision-cut tissue slices of other organs.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11056012/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Novel Method for Floxed Gene Manipulation Using TAT-Cre Recombinase in Ex Vivo Precision-Cut Lung Slices (PCLS).\",\"authors\":\"Sek-Shir Cheong, Tiago C Luis, Matthew Hind, Charlotte H Dean\",\"doi\":\"10.21769/BioProtoc.4980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Precision-cut lung slices (PCLS), ex vivo 3D lung tissue models, have been widely used for various applications in lung research. PCLS serve as an excellent intermediary between in vitro and in vivo models because they retain all resident cell types within their natural niche while preserving the extracellular matrix environment. This protocol describes the TReATS (TAT-Cre recombinase-mediated floxed allele modification in tissue slices) method that enables rapid and efficient gene modification in PCLS derived from adult floxed animals. Here, we present detailed protocols for the TReATS method, consisting of two simple steps: PCLS generation and incubation in a TAT-Cre recombinase solution. Subsequent validation of gene modification involves live staining and imaging of PCLS, quantitative real-time PCR, and cell viability assessment. This four-day protocol eliminates the need for complex Cre-breeding, circumvents issues with premature lethality related to gene mutation, and significantly reduces the use of animals. The TReATS method offers a simple and reproducible solution for gene modification in complex ex vivo tissue-based models, accelerating the study of gene function, disease mechanisms, and the discovery of drug targets. Key features • Achieve permanent ex vivo gene modifications in complex tissue-based models within four days. • Highly adaptable gene modification method that can be applied to induce gene deletion or activation. • Allows simple Cre dosage testing in a controlled ex vivo setting with the advantage of using PCLS generated from the same animal as <i>true controls</i>. • With optimisation, this method can be applied to precision-cut tissue slices of other organs.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11056012/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21769/BioProtoc.4980\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21769/BioProtoc.4980","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

肺切片(PCLS)是一种体外三维肺组织模型,已被广泛应用于肺部研究的各种领域。PCLS 是体外模型和体内模型之间的绝佳中介,因为它们在保留细胞外基质环境的同时,还将所有常驻细胞类型保留在其自然生态位中。本方案介绍了 TReATS(TAT-Cre 重组酶介导的组织切片中浮游等位基因修饰)方法,该方法能快速有效地修饰来自成年浮游动物的 PCLS 中的基因。在此,我们介绍了 TReATS 方法的详细操作规程,包括两个简单步骤:PCLS 生成和在 TAT-Cre 重组酶溶液中培养。基因修饰的后续验证包括 PCLS 的活体染色和成像、定量实时 PCR 和细胞活力评估。这种为期四天的方案无需进行复杂的 Cre 繁殖,避免了与基因突变相关的过早致死问题,并大大减少了动物的使用。TReATS 方法为在复杂的体外组织模型中进行基因修饰提供了一种简单、可重复的解决方案,加快了基因功能、疾病机制和药物靶点的研究。主要特点 - 在四天内实现复杂组织模型的永久性体内外基因修饰。- 基因修饰方法适应性强,可用于诱导基因缺失或激活。- 可在受控的体外环境中进行简单的 Cre 剂量测试,其优势在于可使用同一动物产生的 PCLS 作为真实对照。- 经过优化,这种方法还可应用于其他器官的精密切割组织切片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Method for Floxed Gene Manipulation Using TAT-Cre Recombinase in Ex Vivo Precision-Cut Lung Slices (PCLS).

Precision-cut lung slices (PCLS), ex vivo 3D lung tissue models, have been widely used for various applications in lung research. PCLS serve as an excellent intermediary between in vitro and in vivo models because they retain all resident cell types within their natural niche while preserving the extracellular matrix environment. This protocol describes the TReATS (TAT-Cre recombinase-mediated floxed allele modification in tissue slices) method that enables rapid and efficient gene modification in PCLS derived from adult floxed animals. Here, we present detailed protocols for the TReATS method, consisting of two simple steps: PCLS generation and incubation in a TAT-Cre recombinase solution. Subsequent validation of gene modification involves live staining and imaging of PCLS, quantitative real-time PCR, and cell viability assessment. This four-day protocol eliminates the need for complex Cre-breeding, circumvents issues with premature lethality related to gene mutation, and significantly reduces the use of animals. The TReATS method offers a simple and reproducible solution for gene modification in complex ex vivo tissue-based models, accelerating the study of gene function, disease mechanisms, and the discovery of drug targets. Key features • Achieve permanent ex vivo gene modifications in complex tissue-based models within four days. • Highly adaptable gene modification method that can be applied to induce gene deletion or activation. • Allows simple Cre dosage testing in a controlled ex vivo setting with the advantage of using PCLS generated from the same animal as true controls. • With optimisation, this method can be applied to precision-cut tissue slices of other organs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信