{"title":"用于治疗角膜神经性疼痛的血源性眼药水。","authors":"Ansa Anam, Chang Liu, Louis Tong, Yu-Chi Liu","doi":"10.1089/jop.2023.0155","DOIUrl":null,"url":null,"abstract":"<p><p>Blood-derived preparations, including autologous or allogenic serum, umbilical cord serum/plasma, and platelet-rich plasma eye drops, contain various growth factors, cytokines, and immunoglobulins that resemble natural tears. These components play important roles in corneal cell migration, proliferation, and wound healing. Blood-derived eye drops have demonstrated clinical effectiveness across a spectrum of ocular surface conditions, encompassing dry eye disease, Sjögren's syndrome, graft-versus-host disease, and neuropathic corneal pain (NCP). Currently, management of NCP remains challenging. The emergence of blood-derived eye drops represents a promising therapeutic approach. In this review, we discuss the benefits and limitations of different blood-derived eye drops, their mechanisms of action, and treatment efficacy in patients with NCP. Several studies have demonstrated the clinical efficacy of autologous serum eye drops in relieving pain and pain-like symptoms, such as allodynia and photoallodynia. Corneal nerve parameters were also significantly improved, as evidenced by increased nerve fiber density, length, nerve reflectivity, and tortuosity, as well as a decreased occurrence of beading and neuromas after the treatment. The extent of nerve regeneration correlated with improvement in patient-reported photoallodynia. Cord plasma eye drops also show potential for symptom alleviation and corneal nerve regeneration. Future directions for clinical practice and research involve standardizing preparation protocols, establishing treatment guidelines, elucidating underlying mechanisms, conducting long-term clinical trials, and implementing cost-effective measures such as scaling up manufacturing. With ongoing advancements, blood-derived eye drops hold promise as a valuable therapeutic option for patients suffering from NCP.</p>","PeriodicalId":16689,"journal":{"name":"Journal of Ocular Pharmacology and Therapeutics","volume":" ","pages":"281-292"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296151/pdf/","citationCount":"0","resultStr":"{\"title\":\"Blood-Derived Eye Drops for the Treatment of Corneal Neuropathic Pain.\",\"authors\":\"Ansa Anam, Chang Liu, Louis Tong, Yu-Chi Liu\",\"doi\":\"10.1089/jop.2023.0155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Blood-derived preparations, including autologous or allogenic serum, umbilical cord serum/plasma, and platelet-rich plasma eye drops, contain various growth factors, cytokines, and immunoglobulins that resemble natural tears. These components play important roles in corneal cell migration, proliferation, and wound healing. Blood-derived eye drops have demonstrated clinical effectiveness across a spectrum of ocular surface conditions, encompassing dry eye disease, Sjögren's syndrome, graft-versus-host disease, and neuropathic corneal pain (NCP). Currently, management of NCP remains challenging. The emergence of blood-derived eye drops represents a promising therapeutic approach. In this review, we discuss the benefits and limitations of different blood-derived eye drops, their mechanisms of action, and treatment efficacy in patients with NCP. Several studies have demonstrated the clinical efficacy of autologous serum eye drops in relieving pain and pain-like symptoms, such as allodynia and photoallodynia. Corneal nerve parameters were also significantly improved, as evidenced by increased nerve fiber density, length, nerve reflectivity, and tortuosity, as well as a decreased occurrence of beading and neuromas after the treatment. The extent of nerve regeneration correlated with improvement in patient-reported photoallodynia. Cord plasma eye drops also show potential for symptom alleviation and corneal nerve regeneration. Future directions for clinical practice and research involve standardizing preparation protocols, establishing treatment guidelines, elucidating underlying mechanisms, conducting long-term clinical trials, and implementing cost-effective measures such as scaling up manufacturing. With ongoing advancements, blood-derived eye drops hold promise as a valuable therapeutic option for patients suffering from NCP.</p>\",\"PeriodicalId\":16689,\"journal\":{\"name\":\"Journal of Ocular Pharmacology and Therapeutics\",\"volume\":\" \",\"pages\":\"281-292\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296151/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ocular Pharmacology and Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/jop.2023.0155\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocular Pharmacology and Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jop.2023.0155","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Blood-Derived Eye Drops for the Treatment of Corneal Neuropathic Pain.
Blood-derived preparations, including autologous or allogenic serum, umbilical cord serum/plasma, and platelet-rich plasma eye drops, contain various growth factors, cytokines, and immunoglobulins that resemble natural tears. These components play important roles in corneal cell migration, proliferation, and wound healing. Blood-derived eye drops have demonstrated clinical effectiveness across a spectrum of ocular surface conditions, encompassing dry eye disease, Sjögren's syndrome, graft-versus-host disease, and neuropathic corneal pain (NCP). Currently, management of NCP remains challenging. The emergence of blood-derived eye drops represents a promising therapeutic approach. In this review, we discuss the benefits and limitations of different blood-derived eye drops, their mechanisms of action, and treatment efficacy in patients with NCP. Several studies have demonstrated the clinical efficacy of autologous serum eye drops in relieving pain and pain-like symptoms, such as allodynia and photoallodynia. Corneal nerve parameters were also significantly improved, as evidenced by increased nerve fiber density, length, nerve reflectivity, and tortuosity, as well as a decreased occurrence of beading and neuromas after the treatment. The extent of nerve regeneration correlated with improvement in patient-reported photoallodynia. Cord plasma eye drops also show potential for symptom alleviation and corneal nerve regeneration. Future directions for clinical practice and research involve standardizing preparation protocols, establishing treatment guidelines, elucidating underlying mechanisms, conducting long-term clinical trials, and implementing cost-effective measures such as scaling up manufacturing. With ongoing advancements, blood-derived eye drops hold promise as a valuable therapeutic option for patients suffering from NCP.
期刊介绍:
Journal of Ocular Pharmacology and Therapeutics is the only peer-reviewed journal that combines the fields of ophthalmology and pharmacology to enable optimal treatment and prevention of ocular diseases and disorders. The Journal delivers the latest discoveries in the pharmacokinetics and pharmacodynamics of therapeutics for the treatment of ophthalmic disorders.
Journal of Ocular Pharmacology and Therapeutics coverage includes:
Glaucoma
Cataracts
Retinal degeneration
Ocular infection, trauma, and toxicology
Ocular drug delivery and biotransformation
Ocular pharmacotherapy/clinical trials
Ocular inflammatory and immune disorders
Gene and cell-based therapies
Ocular metabolic disorders
Ocular ischemia and blood flow
Proliferative disorders of the eye
Eyes on Drug Discovery - written by Gary D. Novack, PhD, featuring the latest updates on drug and device pipeline developments as well as policy/regulatory changes by the FDA.