Shuang Liu, Rui Li, Ya-Wen Sun, Hai Lin, Hai-Fang Li
{"title":"蛋白质琥珀酰化、肝脏代谢和肝脏疾病。","authors":"Shuang Liu, Rui Li, Ya-Wen Sun, Hai Lin, Hai-Fang Li","doi":"10.4254/wjh.v16.i3.344","DOIUrl":null,"url":null,"abstract":"<p><p>Succinylation is a highly conserved post-translational modification that is processed <i>via</i> enzymatic and non-enzymatic mechanisms. Succinylation exhibits strong effects on protein stability, enzyme activity, and transcriptional regulation. Protein succinylation is extensively present in the liver, and increasing evidence has demonstrated that succinylation is closely related to hepatic metabolism. For instance, histone acetyltransferase 1 promotes liver glycolysis, and the sirtuin 5-induced desuccinylation is involved in the regulation of the hepatic urea cycle and lipid metabolism. Therefore, the effects of succinylation on hepatic glucose, amino acid, and lipid metabolism under the action of various enzymes will be discussed in this work. In addition, how succinylases regulate the progression of different liver diseases will be reviewed, including the desuccinylation activity of sirtuin 7, which is closely associated with fatty liver disease and hepatitis, and the actions of lysine acetyltransferase 2A and histone acetyltransferase 1 that act as succinyltransferases to regulate the succinylation of target genes that influence the development of hepatocellular carcinoma. In view of the diversity and significance of protein succinylation, targeting the succinylation pathway may serve as an attractive direction for the treatment of liver diseases.</p>","PeriodicalId":23687,"journal":{"name":"World Journal of Hepatology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10989315/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protein succinylation, hepatic metabolism, and liver diseases.\",\"authors\":\"Shuang Liu, Rui Li, Ya-Wen Sun, Hai Lin, Hai-Fang Li\",\"doi\":\"10.4254/wjh.v16.i3.344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Succinylation is a highly conserved post-translational modification that is processed <i>via</i> enzymatic and non-enzymatic mechanisms. Succinylation exhibits strong effects on protein stability, enzyme activity, and transcriptional regulation. Protein succinylation is extensively present in the liver, and increasing evidence has demonstrated that succinylation is closely related to hepatic metabolism. For instance, histone acetyltransferase 1 promotes liver glycolysis, and the sirtuin 5-induced desuccinylation is involved in the regulation of the hepatic urea cycle and lipid metabolism. Therefore, the effects of succinylation on hepatic glucose, amino acid, and lipid metabolism under the action of various enzymes will be discussed in this work. In addition, how succinylases regulate the progression of different liver diseases will be reviewed, including the desuccinylation activity of sirtuin 7, which is closely associated with fatty liver disease and hepatitis, and the actions of lysine acetyltransferase 2A and histone acetyltransferase 1 that act as succinyltransferases to regulate the succinylation of target genes that influence the development of hepatocellular carcinoma. In view of the diversity and significance of protein succinylation, targeting the succinylation pathway may serve as an attractive direction for the treatment of liver diseases.</p>\",\"PeriodicalId\":23687,\"journal\":{\"name\":\"World Journal of Hepatology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10989315/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Hepatology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4254/wjh.v16.i3.344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Hepatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4254/wjh.v16.i3.344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Protein succinylation, hepatic metabolism, and liver diseases.
Succinylation is a highly conserved post-translational modification that is processed via enzymatic and non-enzymatic mechanisms. Succinylation exhibits strong effects on protein stability, enzyme activity, and transcriptional regulation. Protein succinylation is extensively present in the liver, and increasing evidence has demonstrated that succinylation is closely related to hepatic metabolism. For instance, histone acetyltransferase 1 promotes liver glycolysis, and the sirtuin 5-induced desuccinylation is involved in the regulation of the hepatic urea cycle and lipid metabolism. Therefore, the effects of succinylation on hepatic glucose, amino acid, and lipid metabolism under the action of various enzymes will be discussed in this work. In addition, how succinylases regulate the progression of different liver diseases will be reviewed, including the desuccinylation activity of sirtuin 7, which is closely associated with fatty liver disease and hepatitis, and the actions of lysine acetyltransferase 2A and histone acetyltransferase 1 that act as succinyltransferases to regulate the succinylation of target genes that influence the development of hepatocellular carcinoma. In view of the diversity and significance of protein succinylation, targeting the succinylation pathway may serve as an attractive direction for the treatment of liver diseases.