用于检测结直肠癌淋巴结转移的人工智能算法的快速开发和多机构临床验证。

IF 7.1 1区 医学 Q1 PATHOLOGY
Avri Giammanco , Andrey Bychkov , Simon Schallenberg , Tsvetan Tsvetkov , Junya Fukuoka , Alexey Pryalukhin , Fabian Mairinger , Alexander Seper , Wolfgang Hulla , Sebastian Klein , Alexander Quaas , Reinhard Büttner , Yuri Tolkach
{"title":"用于检测结直肠癌淋巴结转移的人工智能算法的快速开发和多机构临床验证。","authors":"Avri Giammanco ,&nbsp;Andrey Bychkov ,&nbsp;Simon Schallenberg ,&nbsp;Tsvetan Tsvetkov ,&nbsp;Junya Fukuoka ,&nbsp;Alexey Pryalukhin ,&nbsp;Fabian Mairinger ,&nbsp;Alexander Seper ,&nbsp;Wolfgang Hulla ,&nbsp;Sebastian Klein ,&nbsp;Alexander Quaas ,&nbsp;Reinhard Büttner ,&nbsp;Yuri Tolkach","doi":"10.1016/j.modpat.2024.100496","DOIUrl":null,"url":null,"abstract":"<div><p>Lymph node metastasis (LNM) detection can be automated using artificial intelligence (AI)-based diagnostic tools. Only limited studies have addressed this task for colorectal cancer (CRC). This study aimed to develop of a clinical-grade digital pathology tool for LNM detection in CRC using the original fast-track framework.</p><p>The training cohort included 432 slides from one department. A segmentation algorithm detecting 8 relevant tissue classes was trained. The test cohorts consisted of materials from 5 pathology departments digitized by 4 different scanning systems.</p><p>A high-quality, large training data set was generated within 7 days and a minimal amount of annotation work using fast-track principles. The AI tool showed very high accuracy for LNM detection in all cohorts, with sensitivity, negative predictive value, and specificity ranges of 0.980 to 1.000, 0.997 to 1.000, and 0.913 to 0.990, correspondingly. Only 5 of 14,460 analyzed test slides with tumor cells over all cohorts were classified as false negative (3/5 representing clusters of tumor cells in lymphatic vessels).</p><p>A clinical-grade tool was trained in a short time using fast-track development principles and validated using the largest international, multi-institutional, multiscanner cohort of cases to date, showing very high precision for LNM detection in CRC. We are releasing a part of the test data sets to facilitate academic research.</p></div>","PeriodicalId":18706,"journal":{"name":"Modern Pathology","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0893395224000760/pdfft?md5=dc556028693cd9fcde6c52fea816d182&pid=1-s2.0-S0893395224000760-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fast-Track Development and Multi-institutional Clinical Validation of an Artificial Intelligence Algorithm for Detection of Lymph Node Metastasis in Colorectal Cancer\",\"authors\":\"Avri Giammanco ,&nbsp;Andrey Bychkov ,&nbsp;Simon Schallenberg ,&nbsp;Tsvetan Tsvetkov ,&nbsp;Junya Fukuoka ,&nbsp;Alexey Pryalukhin ,&nbsp;Fabian Mairinger ,&nbsp;Alexander Seper ,&nbsp;Wolfgang Hulla ,&nbsp;Sebastian Klein ,&nbsp;Alexander Quaas ,&nbsp;Reinhard Büttner ,&nbsp;Yuri Tolkach\",\"doi\":\"10.1016/j.modpat.2024.100496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lymph node metastasis (LNM) detection can be automated using artificial intelligence (AI)-based diagnostic tools. Only limited studies have addressed this task for colorectal cancer (CRC). This study aimed to develop of a clinical-grade digital pathology tool for LNM detection in CRC using the original fast-track framework.</p><p>The training cohort included 432 slides from one department. A segmentation algorithm detecting 8 relevant tissue classes was trained. The test cohorts consisted of materials from 5 pathology departments digitized by 4 different scanning systems.</p><p>A high-quality, large training data set was generated within 7 days and a minimal amount of annotation work using fast-track principles. The AI tool showed very high accuracy for LNM detection in all cohorts, with sensitivity, negative predictive value, and specificity ranges of 0.980 to 1.000, 0.997 to 1.000, and 0.913 to 0.990, correspondingly. Only 5 of 14,460 analyzed test slides with tumor cells over all cohorts were classified as false negative (3/5 representing clusters of tumor cells in lymphatic vessels).</p><p>A clinical-grade tool was trained in a short time using fast-track development principles and validated using the largest international, multi-institutional, multiscanner cohort of cases to date, showing very high precision for LNM detection in CRC. We are releasing a part of the test data sets to facilitate academic research.</p></div>\",\"PeriodicalId\":18706,\"journal\":{\"name\":\"Modern Pathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0893395224000760/pdfft?md5=dc556028693cd9fcde6c52fea816d182&pid=1-s2.0-S0893395224000760-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893395224000760\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893395224000760","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

淋巴结转移(LNM)检测可通过基于人工智能的诊断工具实现自动化。针对结直肠癌的这项任务的研究非常有限。本研究的目的是开发一种临床级数字病理工具,用于使用原始快速通道框架检测结直肠癌(CRC)的淋巴结转移。训练队列包括来自一个科室的 432 张切片。对检测 8 个相关组织类别的分割算法进行了训练。测试队列包括来自五个病理部门的材料,由四种不同的扫描系统进行数字化处理。在 7 天内生成了高质量的大型训练数据集,并利用快速通道原则进行了少量标注工作。人工智能工具在所有队列中对 LNM 的检测都显示出极高的准确性,灵敏度、阴性预测值和特异性范围分别为 0.980-1.000、0.997-1.000 和 0.913-0.990。在所有队列的 14460 张含有肿瘤细胞的分析检验切片中,只有 5 张被归类为假阴性(3/5 代表淋巴管中的肿瘤细胞群)。我们利用快速开发原则在短时间内训练出了临床级工具,并使用迄今为止最大的国际多机构多扫描仪病例队列进行了验证,结果显示 LNM 检测 CRC 的精确度非常高。我们正在发布部分测试数据集,以促进学术研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast-Track Development and Multi-institutional Clinical Validation of an Artificial Intelligence Algorithm for Detection of Lymph Node Metastasis in Colorectal Cancer

Lymph node metastasis (LNM) detection can be automated using artificial intelligence (AI)-based diagnostic tools. Only limited studies have addressed this task for colorectal cancer (CRC). This study aimed to develop of a clinical-grade digital pathology tool for LNM detection in CRC using the original fast-track framework.

The training cohort included 432 slides from one department. A segmentation algorithm detecting 8 relevant tissue classes was trained. The test cohorts consisted of materials from 5 pathology departments digitized by 4 different scanning systems.

A high-quality, large training data set was generated within 7 days and a minimal amount of annotation work using fast-track principles. The AI tool showed very high accuracy for LNM detection in all cohorts, with sensitivity, negative predictive value, and specificity ranges of 0.980 to 1.000, 0.997 to 1.000, and 0.913 to 0.990, correspondingly. Only 5 of 14,460 analyzed test slides with tumor cells over all cohorts were classified as false negative (3/5 representing clusters of tumor cells in lymphatic vessels).

A clinical-grade tool was trained in a short time using fast-track development principles and validated using the largest international, multi-institutional, multiscanner cohort of cases to date, showing very high precision for LNM detection in CRC. We are releasing a part of the test data sets to facilitate academic research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Pathology
Modern Pathology 医学-病理学
CiteScore
14.30
自引率
2.70%
发文量
174
审稿时长
18 days
期刊介绍: Modern Pathology, an international journal under the ownership of The United States & Canadian Academy of Pathology (USCAP), serves as an authoritative platform for publishing top-tier clinical and translational research studies in pathology. Original manuscripts are the primary focus of Modern Pathology, complemented by impactful editorials, reviews, and practice guidelines covering all facets of precision diagnostics in human pathology. The journal's scope includes advancements in molecular diagnostics and genomic classifications of diseases, breakthroughs in immune-oncology, computational science, applied bioinformatics, and digital pathology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信