沉浸曲线空间上分数 Sobolev 度量的完备性和大地距离特性

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2024-01-01 Epub Date: 2024-05-03 DOI:10.1007/s12220-024-01652-3
Martin Bauer, Patrick Heslin, Cy Maor
{"title":"沉浸曲线空间上分数 Sobolev 度量的完备性和大地距离特性","authors":"Martin Bauer, Patrick Heslin, Cy Maor","doi":"10.1007/s12220-024-01652-3","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the geometry of the space of immersed closed curves equipped with reparametrization-invariant Riemannian metrics; the metrics we consider are Sobolev metrics of possible fractional-order <math><mrow><mi>q</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math>. We establish the critical Sobolev index on the metric for several key geometric properties. Our first main result shows that the Riemannian metric induces a metric space structure if and only if <math><mrow><mi>q</mi><mo>></mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math>. Our second main result shows that the metric is geodesically complete (i.e., the geodesic equation is globally well posed) if <math><mrow><mi>q</mi><mo>></mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math>, whereas if <math><mrow><mi>q</mi><mo><</mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math> then finite-time blowup may occur. The geodesic completeness for <math><mrow><mi>q</mi><mo>></mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math> is obtained by proving metric completeness of the space of <math><msup><mi>H</mi><mi>q</mi></msup></math>-immersed curves with the distance induced by the Riemannian metric.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"34 7","pages":"214"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11068588/pdf/","citationCount":"0","resultStr":"{\"title\":\"Completeness and Geodesic Distance Properties for Fractional Sobolev Metrics on Spaces of Immersed Curves.\",\"authors\":\"Martin Bauer, Patrick Heslin, Cy Maor\",\"doi\":\"10.1007/s12220-024-01652-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigate the geometry of the space of immersed closed curves equipped with reparametrization-invariant Riemannian metrics; the metrics we consider are Sobolev metrics of possible fractional-order <math><mrow><mi>q</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math>. We establish the critical Sobolev index on the metric for several key geometric properties. Our first main result shows that the Riemannian metric induces a metric space structure if and only if <math><mrow><mi>q</mi><mo>></mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math>. Our second main result shows that the metric is geodesically complete (i.e., the geodesic equation is globally well posed) if <math><mrow><mi>q</mi><mo>></mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math>, whereas if <math><mrow><mi>q</mi><mo><</mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math> then finite-time blowup may occur. The geodesic completeness for <math><mrow><mi>q</mi><mo>></mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math> is obtained by proving metric completeness of the space of <math><msup><mi>H</mi><mi>q</mi></msup></math>-immersed curves with the distance induced by the Riemannian metric.</p>\",\"PeriodicalId\":56121,\"journal\":{\"name\":\"Journal of Geometric Analysis\",\"volume\":\"34 7\",\"pages\":\"214\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11068588/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01652-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-024-01652-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了配有重参数化不变黎曼度量的沉浸封闭曲线空间的几何;我们考虑的度量是可能分数阶 q∈[0,∞) 的 Sobolev 度量。我们为度量的几个关键几何性质建立了临界索波列夫指数。我们的第一个主要结果表明,当且仅当 q>1/2 时,黎曼度量引出一个度量空间结构。我们的第二个主要结果表明,如果 q>3/2,则公度量是测地完全的(即测地方程是全局良好拟合的),而如果 q3/2,则可能出现有限时间膨胀。q>3/2 的大地完备性是通过证明具有黎曼度量所诱导距离的 Hq-immersed 曲线空间的度量完备性得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Completeness and Geodesic Distance Properties for Fractional Sobolev Metrics on Spaces of Immersed Curves.

We investigate the geometry of the space of immersed closed curves equipped with reparametrization-invariant Riemannian metrics; the metrics we consider are Sobolev metrics of possible fractional-order q[0,). We establish the critical Sobolev index on the metric for several key geometric properties. Our first main result shows that the Riemannian metric induces a metric space structure if and only if q>1/2. Our second main result shows that the metric is geodesically complete (i.e., the geodesic equation is globally well posed) if q>3/2, whereas if q<3/2 then finite-time blowup may occur. The geodesic completeness for q>3/2 is obtained by proving metric completeness of the space of Hq-immersed curves with the distance induced by the Riemannian metric.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信