Lysbeth Floden, Michael DeRosa, Jessica Roydhouse, Jennifer L Beaumont, Stacie Hudgens
{"title":"[特刊 PRO]患者报告结果恶化时间的估计值和敏感性分析演示。","authors":"Lysbeth Floden, Michael DeRosa, Jessica Roydhouse, Jennifer L Beaumont, Stacie Hudgens","doi":"10.1080/10543406.2024.2341649","DOIUrl":null,"url":null,"abstract":"<p><p>In oncology trials, health-related quality of life (HRQoL), specifically patient-reported symptom burden and functional status, can support the interpretation of survival endpoints, such as progression-free survival. However, applying time-to-event endpoints to patient-reported outcomes (PRO) data is challenging. For example, in time-to-deterioration analyses clinical events such as disease progression are common in many settings and are often handled through censoring the patient at the time of occurrence; however, disease progression and HRQoL are often related leading to informative censoring. Special consideration to the definition of events and intercurrent events (ICEs) is necessary. In this work, we demonstrate time-to-deterioration of PRO estimands and sensitivity analyses to answer research questions using composite, hypothetical, and treatment policy strategies applied to a single endpoint of disease-related symptoms. Multiple imputation methods under both the missing-at-random and missing-not-at-random assumptions are used as sensitivity analyses of primary estimands. Hazard ratios ranged from 0.52 to 0.66 over all the estimands and sensitivity analyses modeling a robust treatment effect favoring the treatment in time to disease symptom deterioration or death. Differences in the estimands include how people who experience disease progression or discontinue the randomized treatment due to AEs are accounted for in the analysis. We use the estimand framework to define interpretable and principled approaches for different time-to-deterioration research questions and provide practical recommendations. Reporting the proportions of patient events and patient censoring by reason helps understand the mechanisms that drive the results, allowing for optimal interpretation.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"918-932"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A demonstration of estimands and sensitivity analyses for time-to-deterioration of patient reported outcomes.\",\"authors\":\"Lysbeth Floden, Michael DeRosa, Jessica Roydhouse, Jennifer L Beaumont, Stacie Hudgens\",\"doi\":\"10.1080/10543406.2024.2341649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In oncology trials, health-related quality of life (HRQoL), specifically patient-reported symptom burden and functional status, can support the interpretation of survival endpoints, such as progression-free survival. However, applying time-to-event endpoints to patient-reported outcomes (PRO) data is challenging. For example, in time-to-deterioration analyses clinical events such as disease progression are common in many settings and are often handled through censoring the patient at the time of occurrence; however, disease progression and HRQoL are often related leading to informative censoring. Special consideration to the definition of events and intercurrent events (ICEs) is necessary. In this work, we demonstrate time-to-deterioration of PRO estimands and sensitivity analyses to answer research questions using composite, hypothetical, and treatment policy strategies applied to a single endpoint of disease-related symptoms. Multiple imputation methods under both the missing-at-random and missing-not-at-random assumptions are used as sensitivity analyses of primary estimands. Hazard ratios ranged from 0.52 to 0.66 over all the estimands and sensitivity analyses modeling a robust treatment effect favoring the treatment in time to disease symptom deterioration or death. Differences in the estimands include how people who experience disease progression or discontinue the randomized treatment due to AEs are accounted for in the analysis. We use the estimand framework to define interpretable and principled approaches for different time-to-deterioration research questions and provide practical recommendations. Reporting the proportions of patient events and patient censoring by reason helps understand the mechanisms that drive the results, allowing for optimal interpretation.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"918-932\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2024.2341649\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2341649","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
A demonstration of estimands and sensitivity analyses for time-to-deterioration of patient reported outcomes.
In oncology trials, health-related quality of life (HRQoL), specifically patient-reported symptom burden and functional status, can support the interpretation of survival endpoints, such as progression-free survival. However, applying time-to-event endpoints to patient-reported outcomes (PRO) data is challenging. For example, in time-to-deterioration analyses clinical events such as disease progression are common in many settings and are often handled through censoring the patient at the time of occurrence; however, disease progression and HRQoL are often related leading to informative censoring. Special consideration to the definition of events and intercurrent events (ICEs) is necessary. In this work, we demonstrate time-to-deterioration of PRO estimands and sensitivity analyses to answer research questions using composite, hypothetical, and treatment policy strategies applied to a single endpoint of disease-related symptoms. Multiple imputation methods under both the missing-at-random and missing-not-at-random assumptions are used as sensitivity analyses of primary estimands. Hazard ratios ranged from 0.52 to 0.66 over all the estimands and sensitivity analyses modeling a robust treatment effect favoring the treatment in time to disease symptom deterioration or death. Differences in the estimands include how people who experience disease progression or discontinue the randomized treatment due to AEs are accounted for in the analysis. We use the estimand framework to define interpretable and principled approaches for different time-to-deterioration research questions and provide practical recommendations. Reporting the proportions of patient events and patient censoring by reason helps understand the mechanisms that drive the results, allowing for optimal interpretation.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.