通过拓扑数据分析研究受虐待儿童脑白质拓扑结构的改变。

IF 3.6 3区 医学 Q2 NEUROSCIENCES
Network Neuroscience Pub Date : 2024-04-01 eCollection Date: 2024-01-01 DOI:10.1162/netn_a_00355
Moo K Chung, Tahmineh Azizi, Jamie L Hanson, Andrew L Alexander, Seth D Pollak, Richard J Davidson
{"title":"通过拓扑数据分析研究受虐待儿童脑白质拓扑结构的改变。","authors":"Moo K Chung, Tahmineh Azizi, Jamie L Hanson, Andrew L Alexander, Seth D Pollak, Richard J Davidson","doi":"10.1162/netn_a_00355","DOIUrl":null,"url":null,"abstract":"<p><p>Childhood maltreatment may adversely affect brain development and consequently influence behavioral, emotional, and psychological patterns during adulthood. In this study, we propose an analytical pipeline for modeling the altered topological structure of brain white matter in maltreated and typically developing children. We perform topological data analysis (TDA) to assess the alteration in the global topology of the brain white matter structural covariance network among children. We use persistent homology, an algebraic technique in TDA, to analyze topological features in the brain covariance networks constructed from structural magnetic resonance imaging and diffusion tensor imaging. We develop a novel framework for statistical inference based on the Wasserstein distance to assess the significance of the observed topological differences. Using these methods in comparing maltreated children with a typically developing control group, we find that maltreatment may increase homogeneity in white matter structures and thus induce higher correlations in the structural covariance; this is reflected in the topological profile. Our findings strongly suggest that TDA can be a valuable framework to model altered topological structures of the brain. The MATLAB codes and processed data used in this study can be found at https://github.com/laplcebeltrami/maltreated.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"8 1","pages":"355-376"},"PeriodicalIF":3.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11073548/pdf/","citationCount":"0","resultStr":"{\"title\":\"Altered topological structure of the brain white matter in maltreated children through topological data analysis.\",\"authors\":\"Moo K Chung, Tahmineh Azizi, Jamie L Hanson, Andrew L Alexander, Seth D Pollak, Richard J Davidson\",\"doi\":\"10.1162/netn_a_00355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Childhood maltreatment may adversely affect brain development and consequently influence behavioral, emotional, and psychological patterns during adulthood. In this study, we propose an analytical pipeline for modeling the altered topological structure of brain white matter in maltreated and typically developing children. We perform topological data analysis (TDA) to assess the alteration in the global topology of the brain white matter structural covariance network among children. We use persistent homology, an algebraic technique in TDA, to analyze topological features in the brain covariance networks constructed from structural magnetic resonance imaging and diffusion tensor imaging. We develop a novel framework for statistical inference based on the Wasserstein distance to assess the significance of the observed topological differences. Using these methods in comparing maltreated children with a typically developing control group, we find that maltreatment may increase homogeneity in white matter structures and thus induce higher correlations in the structural covariance; this is reflected in the topological profile. Our findings strongly suggest that TDA can be a valuable framework to model altered topological structures of the brain. The MATLAB codes and processed data used in this study can be found at https://github.com/laplcebeltrami/maltreated.</p>\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"8 1\",\"pages\":\"355-376\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11073548/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/netn_a_00355\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00355","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

儿童时期的虐待可能会对大脑发育产生不利影响,进而影响成年后的行为、情绪和心理模式。在本研究中,我们提出了一个分析管道,用于模拟受虐待儿童和发育正常儿童大脑白质拓扑结构的改变。我们通过拓扑数据分析(TDA)来评估儿童大脑白质结构协方差网络的全局拓扑结构的改变。我们使用拓扑数据分析中的一种代数技术--持久同源性来分析由结构磁共振成像和扩散张量成像构建的大脑协方差网络中的拓扑特征。我们开发了一种基于 Wasserstein 距离的新型统计推断框架,用于评估观察到的拓扑差异的显著性。使用这些方法比较受虐待儿童和发育正常的对照组,我们发现虐待可能会增加白质结构的同质性,从而导致结构协方差的相关性增加;这反映在拓扑特征上。我们的研究结果有力地表明,TDA 可以成为大脑拓扑结构变化建模的重要框架。本研究使用的 MATLAB 代码和处理过的数据可在 https://github.com/laplcebeltrami/maltreated 上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Altered topological structure of the brain white matter in maltreated children through topological data analysis.

Childhood maltreatment may adversely affect brain development and consequently influence behavioral, emotional, and psychological patterns during adulthood. In this study, we propose an analytical pipeline for modeling the altered topological structure of brain white matter in maltreated and typically developing children. We perform topological data analysis (TDA) to assess the alteration in the global topology of the brain white matter structural covariance network among children. We use persistent homology, an algebraic technique in TDA, to analyze topological features in the brain covariance networks constructed from structural magnetic resonance imaging and diffusion tensor imaging. We develop a novel framework for statistical inference based on the Wasserstein distance to assess the significance of the observed topological differences. Using these methods in comparing maltreated children with a typically developing control group, we find that maltreatment may increase homogeneity in white matter structures and thus induce higher correlations in the structural covariance; this is reflected in the topological profile. Our findings strongly suggest that TDA can be a valuable framework to model altered topological structures of the brain. The MATLAB codes and processed data used in this study can be found at https://github.com/laplcebeltrami/maltreated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信