{"title":"在果蝇幼虫神经肌肉接头处诱发突触前稳态电位。","authors":"Tingting Wang, C Andrew Frank","doi":"10.1101/pdb.prot108424","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>Drosophila melanogaster</i> neuromuscular junction (NMJ) is an easily accessible synapse and an excellent model for understanding synapse development, function, and plasticity. A form of plasticity called presynaptic homeostatic potentiation (PHP) operates at the NMJ and keeps synapse excitation levels stable. PHP can be induced rapidly in 10 min by application of a pharmacological antagonist of glutamate receptors (philanthotoxin-433) or chronically by deletion of the gene encoding the postsynaptic glutamate receptor subunit GluRIIA. To assess PHP, electrophysiological recordings of spontaneous miniature excitatory postsynaptic potentials and evoked excitatory postsynaptic potentials are usually performed at the NMJ of muscle 6 at abdominal segments A2 and A3. This protocol describes steps for larval dissection to access the NMJ, use of mutant lines to assess PHP, application of philanthotoxin-433 to the NMJ, and electrophysiological recordings following drug application. Collectively, these steps allow for analysis of the acute induction and expression of PHP. Recording chamber preparation, electrophysiology rig setup, larval dissection, and current clamp recording steps have been described elsewhere.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.prot108424"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522017/pdf/","citationCount":"0","resultStr":"{\"title\":\"Eliciting Presynaptic Homeostatic Potentiation at the <i>Drosophila</i> Larval Neuromuscular Junction.\",\"authors\":\"Tingting Wang, C Andrew Frank\",\"doi\":\"10.1101/pdb.prot108424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The <i>Drosophila melanogaster</i> neuromuscular junction (NMJ) is an easily accessible synapse and an excellent model for understanding synapse development, function, and plasticity. A form of plasticity called presynaptic homeostatic potentiation (PHP) operates at the NMJ and keeps synapse excitation levels stable. PHP can be induced rapidly in 10 min by application of a pharmacological antagonist of glutamate receptors (philanthotoxin-433) or chronically by deletion of the gene encoding the postsynaptic glutamate receptor subunit GluRIIA. To assess PHP, electrophysiological recordings of spontaneous miniature excitatory postsynaptic potentials and evoked excitatory postsynaptic potentials are usually performed at the NMJ of muscle 6 at abdominal segments A2 and A3. This protocol describes steps for larval dissection to access the NMJ, use of mutant lines to assess PHP, application of philanthotoxin-433 to the NMJ, and electrophysiological recordings following drug application. Collectively, these steps allow for analysis of the acute induction and expression of PHP. Recording chamber preparation, electrophysiology rig setup, larval dissection, and current clamp recording steps have been described elsewhere.</p>\",\"PeriodicalId\":10496,\"journal\":{\"name\":\"Cold Spring Harbor protocols\",\"volume\":\" \",\"pages\":\"pdb.prot108424\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522017/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/pdb.prot108424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.prot108424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Eliciting Presynaptic Homeostatic Potentiation at the Drosophila Larval Neuromuscular Junction.
The Drosophila melanogaster neuromuscular junction (NMJ) is an easily accessible synapse and an excellent model for understanding synapse development, function, and plasticity. A form of plasticity called presynaptic homeostatic potentiation (PHP) operates at the NMJ and keeps synapse excitation levels stable. PHP can be induced rapidly in 10 min by application of a pharmacological antagonist of glutamate receptors (philanthotoxin-433) or chronically by deletion of the gene encoding the postsynaptic glutamate receptor subunit GluRIIA. To assess PHP, electrophysiological recordings of spontaneous miniature excitatory postsynaptic potentials and evoked excitatory postsynaptic potentials are usually performed at the NMJ of muscle 6 at abdominal segments A2 and A3. This protocol describes steps for larval dissection to access the NMJ, use of mutant lines to assess PHP, application of philanthotoxin-433 to the NMJ, and electrophysiological recordings following drug application. Collectively, these steps allow for analysis of the acute induction and expression of PHP. Recording chamber preparation, electrophysiology rig setup, larval dissection, and current clamp recording steps have been described elsewhere.
Cold Spring Harbor protocolsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍:
Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.