{"title":"利用连续模型对股骨头进行可行性研究。","authors":"Kianoosh Abbassi, Maziar Janghorban, Farshad Javanmardi, Saleh Mobasseri","doi":"10.1080/03091902.2024.2336512","DOIUrl":null,"url":null,"abstract":"<p><p>It is known that the geometric structures of bones are very complex. This has made researchers unable to model them with the continuum approach and suffice to model them with simulation or experimental tests. Undoubtedly, provide a simple and accurate continuum model for studying bones is always desirable. In this article, as the first serious endeavour, a suggested beam model is investigated to see whether it is suitable for modelling femur bones or not. If this model gives an acceptable answer, it can be a link to the continuum theories for beams. In other words, the approximated beam model can be formulated with continuum approach to study femur bone. For feasibility study of the approximated model for femur bones, both static and dynamic analysis of them are investigated and compared. It is found that in most cases for vibration analysis, the suggested model has acceptable results but in static analysis, the mean difference between the results is about 16%. This research is hoped to be the first serious step in this category.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility study of femur bone with continuum model.\",\"authors\":\"Kianoosh Abbassi, Maziar Janghorban, Farshad Javanmardi, Saleh Mobasseri\",\"doi\":\"10.1080/03091902.2024.2336512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is known that the geometric structures of bones are very complex. This has made researchers unable to model them with the continuum approach and suffice to model them with simulation or experimental tests. Undoubtedly, provide a simple and accurate continuum model for studying bones is always desirable. In this article, as the first serious endeavour, a suggested beam model is investigated to see whether it is suitable for modelling femur bones or not. If this model gives an acceptable answer, it can be a link to the continuum theories for beams. In other words, the approximated beam model can be formulated with continuum approach to study femur bone. For feasibility study of the approximated model for femur bones, both static and dynamic analysis of them are investigated and compared. It is found that in most cases for vibration analysis, the suggested model has acceptable results but in static analysis, the mean difference between the results is about 16%. This research is hoped to be the first serious step in this category.</p>\",\"PeriodicalId\":39637,\"journal\":{\"name\":\"Journal of Medical Engineering and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03091902.2024.2336512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2024.2336512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Feasibility study of femur bone with continuum model.
It is known that the geometric structures of bones are very complex. This has made researchers unable to model them with the continuum approach and suffice to model them with simulation or experimental tests. Undoubtedly, provide a simple and accurate continuum model for studying bones is always desirable. In this article, as the first serious endeavour, a suggested beam model is investigated to see whether it is suitable for modelling femur bones or not. If this model gives an acceptable answer, it can be a link to the continuum theories for beams. In other words, the approximated beam model can be formulated with continuum approach to study femur bone. For feasibility study of the approximated model for femur bones, both static and dynamic analysis of them are investigated and compared. It is found that in most cases for vibration analysis, the suggested model has acceptable results but in static analysis, the mean difference between the results is about 16%. This research is hoped to be the first serious step in this category.
期刊介绍:
The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.