Wenxiao Chen , Jinghong Hu , Jing Chen , Yuanyuan Guo , Yongjian Hong , Houkai Xia
{"title":"基于 RNA 测序数据的蟾蜍生长过程中致毒基因表达的时空分析。","authors":"Wenxiao Chen , Jinghong Hu , Jing Chen , Yuanyuan Guo , Yongjian Hong , Houkai Xia","doi":"10.1016/j.ygeno.2024.110847","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p><em>Bufo gargarizans</em> Cantor, a widely distributed amphibian species in Asia, produces and releases toxins through its retroauricular and granular glands. Although various tissues have been sequenced, the molecular mechanisms underlying the toxin production remain unclear. To elucidate these mechanisms, abdominal skin (non-toxic secretory glands) and retroauricular gland (toxic secreting glands) samples were collected at different time points (3, 6, 12, 24, and 36 months) for RNA sequencing (RNA-seq) and analysis.</p></div><div><h3>Results</h3><p>In comparison to the S group during the same period, a total of 3053, 3026, 1516, 1028, and 2061 differentially expressed genes (DEGs) were identified across five developmental stages. Gene Ontology (GO) analysis revealed that DEGs were primarily enriched in biological processes including cellular processes, single-organism processes, metabolic processes, and biological regulation. In terms of cellular components, the DEGs were predominantly localized in the cell and cell parts, whereas molecular function indicated significant enrichment in binding and catalytic activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the metabolism and synthesis of various substances, such as lipid metabolism, cofactor and vitamin metabolism, tryptophan metabolism, steroid biosynthesis, and primary bile acid biosynthesis, were accompanied by the development of toads. Additionally, using trend analysis, we discovered candidate genes that were upregulated in the retroauricular glands during development, and the abundance of these genes in the abdominal skin was extremely low. Finally, we identified 26 genes that are likely to be involved in toxin production and that are likely to be involved in toxin anabolism.</p></div><div><h3>Conclusion</h3><p>Overall, these results provide new insights into the genes involved in toxin production in <em>B. gargarizans</em>, which will improve our understanding of the molecular mechanisms underlying toxigenic gene expression.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888754324000685/pdfft?md5=33cfce8aa693b41dd8a3f1f51a2090f6&pid=1-s2.0-S0888754324000685-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Spatio-temporal analysis of toxigenic genes expression in the growing Bufo gargarizans based on RNA sequencing data\",\"authors\":\"Wenxiao Chen , Jinghong Hu , Jing Chen , Yuanyuan Guo , Yongjian Hong , Houkai Xia\",\"doi\":\"10.1016/j.ygeno.2024.110847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p><em>Bufo gargarizans</em> Cantor, a widely distributed amphibian species in Asia, produces and releases toxins through its retroauricular and granular glands. Although various tissues have been sequenced, the molecular mechanisms underlying the toxin production remain unclear. To elucidate these mechanisms, abdominal skin (non-toxic secretory glands) and retroauricular gland (toxic secreting glands) samples were collected at different time points (3, 6, 12, 24, and 36 months) for RNA sequencing (RNA-seq) and analysis.</p></div><div><h3>Results</h3><p>In comparison to the S group during the same period, a total of 3053, 3026, 1516, 1028, and 2061 differentially expressed genes (DEGs) were identified across five developmental stages. Gene Ontology (GO) analysis revealed that DEGs were primarily enriched in biological processes including cellular processes, single-organism processes, metabolic processes, and biological regulation. In terms of cellular components, the DEGs were predominantly localized in the cell and cell parts, whereas molecular function indicated significant enrichment in binding and catalytic activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the metabolism and synthesis of various substances, such as lipid metabolism, cofactor and vitamin metabolism, tryptophan metabolism, steroid biosynthesis, and primary bile acid biosynthesis, were accompanied by the development of toads. Additionally, using trend analysis, we discovered candidate genes that were upregulated in the retroauricular glands during development, and the abundance of these genes in the abdominal skin was extremely low. Finally, we identified 26 genes that are likely to be involved in toxin production and that are likely to be involved in toxin anabolism.</p></div><div><h3>Conclusion</h3><p>Overall, these results provide new insights into the genes involved in toxin production in <em>B. gargarizans</em>, which will improve our understanding of the molecular mechanisms underlying toxigenic gene expression.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0888754324000685/pdfft?md5=33cfce8aa693b41dd8a3f1f51a2090f6&pid=1-s2.0-S0888754324000685-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888754324000685\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888754324000685","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Spatio-temporal analysis of toxigenic genes expression in the growing Bufo gargarizans based on RNA sequencing data
Background
Bufo gargarizans Cantor, a widely distributed amphibian species in Asia, produces and releases toxins through its retroauricular and granular glands. Although various tissues have been sequenced, the molecular mechanisms underlying the toxin production remain unclear. To elucidate these mechanisms, abdominal skin (non-toxic secretory glands) and retroauricular gland (toxic secreting glands) samples were collected at different time points (3, 6, 12, 24, and 36 months) for RNA sequencing (RNA-seq) and analysis.
Results
In comparison to the S group during the same period, a total of 3053, 3026, 1516, 1028, and 2061 differentially expressed genes (DEGs) were identified across five developmental stages. Gene Ontology (GO) analysis revealed that DEGs were primarily enriched in biological processes including cellular processes, single-organism processes, metabolic processes, and biological regulation. In terms of cellular components, the DEGs were predominantly localized in the cell and cell parts, whereas molecular function indicated significant enrichment in binding and catalytic activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the metabolism and synthesis of various substances, such as lipid metabolism, cofactor and vitamin metabolism, tryptophan metabolism, steroid biosynthesis, and primary bile acid biosynthesis, were accompanied by the development of toads. Additionally, using trend analysis, we discovered candidate genes that were upregulated in the retroauricular glands during development, and the abundance of these genes in the abdominal skin was extremely low. Finally, we identified 26 genes that are likely to be involved in toxin production and that are likely to be involved in toxin anabolism.
Conclusion
Overall, these results provide new insights into the genes involved in toxin production in B. gargarizans, which will improve our understanding of the molecular mechanisms underlying toxigenic gene expression.