{"title":"[通过初级纤毛调节脂肪祖细胞和纤维-脂肪生成祖细胞]。","authors":"Yuhei Nishimura","doi":"10.1254/fpj.23108","DOIUrl":null,"url":null,"abstract":"<p><p>The primary cilium, an antenna-like structure of cell membrane, detects various signals and regulates cellular functions such as proliferation and differentiation. The impairment of primary cilium is associated with the etiologies of diseases including cancer, obesity, and congenital anomalies. In this review, novel functions of trichoplein, a suppressor of ciliogenesis, on the regulation of adipose progenitors and fibro-adipogenic progenitors are focused. Trichoplein-knockout mice show resistance to high-fat diet-induced obesity and accelerated regeneration after skeletal muscle injury. The primary cilia of adipose progenitors from trichoplein-knockout mice are elongated, leading to the inhibitions of the accumulation of lipid raft to the base of primary cilia and the phosphorylation of AKT. The primary cilia of fibro-adipogenic progenitors from trichoplein-knockout mice are also elongated, causing the increased expression of IL-13 through IL-33 receptor signaling. These mechanisms are involved in the resistance to diet-induced obesity and improved regeneration. These findings suggest that targeting the primary cilia of specific cells may be a novel therapeutic approach through modulating cellular functions.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":" ","pages":"188-191"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Regulation of adipose progenitors and fibro-adipogenic progenitors through primary cilia].\",\"authors\":\"Yuhei Nishimura\",\"doi\":\"10.1254/fpj.23108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The primary cilium, an antenna-like structure of cell membrane, detects various signals and regulates cellular functions such as proliferation and differentiation. The impairment of primary cilium is associated with the etiologies of diseases including cancer, obesity, and congenital anomalies. In this review, novel functions of trichoplein, a suppressor of ciliogenesis, on the regulation of adipose progenitors and fibro-adipogenic progenitors are focused. Trichoplein-knockout mice show resistance to high-fat diet-induced obesity and accelerated regeneration after skeletal muscle injury. The primary cilia of adipose progenitors from trichoplein-knockout mice are elongated, leading to the inhibitions of the accumulation of lipid raft to the base of primary cilia and the phosphorylation of AKT. The primary cilia of fibro-adipogenic progenitors from trichoplein-knockout mice are also elongated, causing the increased expression of IL-13 through IL-33 receptor signaling. These mechanisms are involved in the resistance to diet-induced obesity and improved regeneration. These findings suggest that targeting the primary cilia of specific cells may be a novel therapeutic approach through modulating cellular functions.</p>\",\"PeriodicalId\":12208,\"journal\":{\"name\":\"Folia Pharmacologica Japonica\",\"volume\":\" \",\"pages\":\"188-191\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Folia Pharmacologica Japonica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1254/fpj.23108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Pharmacologica Japonica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1254/fpj.23108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
[Regulation of adipose progenitors and fibro-adipogenic progenitors through primary cilia].
The primary cilium, an antenna-like structure of cell membrane, detects various signals and regulates cellular functions such as proliferation and differentiation. The impairment of primary cilium is associated with the etiologies of diseases including cancer, obesity, and congenital anomalies. In this review, novel functions of trichoplein, a suppressor of ciliogenesis, on the regulation of adipose progenitors and fibro-adipogenic progenitors are focused. Trichoplein-knockout mice show resistance to high-fat diet-induced obesity and accelerated regeneration after skeletal muscle injury. The primary cilia of adipose progenitors from trichoplein-knockout mice are elongated, leading to the inhibitions of the accumulation of lipid raft to the base of primary cilia and the phosphorylation of AKT. The primary cilia of fibro-adipogenic progenitors from trichoplein-knockout mice are also elongated, causing the increased expression of IL-13 through IL-33 receptor signaling. These mechanisms are involved in the resistance to diet-induced obesity and improved regeneration. These findings suggest that targeting the primary cilia of specific cells may be a novel therapeutic approach through modulating cellular functions.